Reduce data dimension using PCA

조회 수: 2 (최근 30일)
Hg
Hg 2016년 11월 7일
답변: Vassilis Papanastasiou 2021년 12월 17일
pca() outputs the coefficient of the variables and principal components of a data. Is there any way to reduce the dimension of the data (340 observations), let say from 1200 dimension to 30 dimension using pca()?
  댓글 수: 2
Adam
Adam 2016년 11월 7일
You should just be able to keep the 30 largest components from running pca.
Hg
Hg 2016년 11월 8일
I use
[residuals,reconstructed] = pcares(X,ndim)

댓글을 달려면 로그인하십시오.

답변 (1개)

Vassilis Papanastasiou
Vassilis Papanastasiou 2021년 12월 17일
Hi Hg,
What you can do is to use pca directly. Say that X is of size 340x1200 (340 measurements and 1200 variables/dimensions). You want to get an output with reduced dimensionaty of 30. The code below will do that for you:
p = 30;
[~, pca_scores, ~, ~, var_explained] = pca(X, 'NumComponents', p);
  • pca_scores is your reduced dimension data.
  • var_explained contains the respective variances of each component.
I hope that helps.

카테고리

Help CenterFile Exchange에서 Dimensionality Reduction and Feature Extraction에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by