negative eigenvalues in sample covariance matrix

조회 수: 2 (최근 30일)
yasser
yasser 2014년 10월 10일
답변: Matt J 2014년 10월 10일
clc; clear;
N=10; taps=2; snr=0; noise_var=0.05;
h1r=randn(1,taps)/sqrt(2); h1i=randn(1,taps)/sqrt(2); h1=complex(h1r,h1i); h1=h1/norm(h1);
h2r=randn(1,taps)/sqrt(2); h2i=randn(1,taps)/sqrt(2); h2=complex(h2r,h2i); h2=h2/norm(h2);
c1=[h1(1);zeros(1,N-1)']; r1=[h1 zeros(1,N-1)]; H1=toeplitz(c1,r1);
c2=[h2(1);zeros(1,N-1)']; r2=[h2 zeros(1,N-1)]; H2=toeplitz(c2,r2);
H=[H1;H2];
order=64; k=log2(order); n=(taps+N-1)*k; x = randi([0 1],n,1); hMod = comm.RectangularQAMModulator(order); hBitToInt = comm.BitToInteger(k);% Convert the bits in x into k-bit symbols. xsym = step(hBitToInt,x); D = modulate(modem.qammod(order),xsym);
X=awgn(H*D,snr,'measured');
% noise1=sqrt(noise_var/2)*(randn(1,size(H1*D,1))+i*randn(1,size(H1*D,2))); % noise2=sqrt(noise_var/2)*(randn(1,size(H2*D,1))+i*randn(1,size(H2*D,2))); % noise=[noise1.';noise2.']; % % X=H*D+noise;
R=X*X'/size(X,2);
[Q ,eig_val]=eig (R);
the problem is that matrix of eig_val has negative values and this can't happen for sample covariance matrix R any help please

답변 (1개)

Matt J
Matt J 2014년 10월 10일
I can't run your code, because you haven't provided all variables needed to run it. However, you can expect small magnitude negative eigenvalues due to floating point errors, if your true covariance matrix ix close to singular.

카테고리

Help CenterFile Exchange에서 Linear Algebra에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by