negative eigenvalues in sample covariance matrix
조회 수: 2 (최근 30일)
이전 댓글 표시
clc; clear;
N=10; taps=2; snr=0; noise_var=0.05;
h1r=randn(1,taps)/sqrt(2); h1i=randn(1,taps)/sqrt(2); h1=complex(h1r,h1i); h1=h1/norm(h1);
h2r=randn(1,taps)/sqrt(2); h2i=randn(1,taps)/sqrt(2); h2=complex(h2r,h2i); h2=h2/norm(h2);
c1=[h1(1);zeros(1,N-1)']; r1=[h1 zeros(1,N-1)]; H1=toeplitz(c1,r1);
c2=[h2(1);zeros(1,N-1)']; r2=[h2 zeros(1,N-1)]; H2=toeplitz(c2,r2);
H=[H1;H2];
order=64; k=log2(order); n=(taps+N-1)*k; x = randi([0 1],n,1); hMod = comm.RectangularQAMModulator(order); hBitToInt = comm.BitToInteger(k);% Convert the bits in x into k-bit symbols. xsym = step(hBitToInt,x); D = modulate(modem.qammod(order),xsym);
X=awgn(H*D,snr,'measured');
% noise1=sqrt(noise_var/2)*(randn(1,size(H1*D,1))+i*randn(1,size(H1*D,2))); % noise2=sqrt(noise_var/2)*(randn(1,size(H2*D,1))+i*randn(1,size(H2*D,2))); % noise=[noise1.';noise2.']; % % X=H*D+noise;
R=X*X'/size(X,2);
[Q ,eig_val]=eig (R);
the problem is that matrix of eig_val has negative values and this can't happen for sample covariance matrix R any help please
댓글 수: 0
답변 (1개)
Matt J
2014년 10월 10일
I can't run your code, because you haven't provided all variables needed to run it. However, you can expect small magnitude negative eigenvalues due to floating point errors, if your true covariance matrix ix close to singular.
댓글 수: 0
참고 항목
카테고리
Help Center 및 File Exchange에서 Linear Algebra에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!