How to find "rectangular" corners?

조회 수: 19 (최근 30일)
Mor
Mor 2014년 5월 23일
답변: Matt J 2020년 2월 6일
Hey,
I have this image:
I want to find the 4 corners of the "rectangular", but I don't want to use the "corner" function. What can I do?
Thanks.
  댓글 수: 1
Cedric
Cedric 2014년 5월 24일
If your rectangles are not too degenerate, you could get corners with four 2D convolutions using appropriate kernels.

댓글을 달려면 로그인하십시오.

채택된 답변

Matt J
Matt J 2014년 5월 24일
편집: Matt J 2014년 5월 24일
If the quadrilateral is roughly aligned with the edges of the image, you could also find the corners as follows,
[I,J]=find(Image>max(Image(:))/2);
IJ=[I,J];
[~,idx]=min(IJ*[1 1; -1 -1; 1 -1; -1 1].');
corners=IJ(idx,:)
  댓글 수: 13
Balkrishna Patankar
Balkrishna Patankar 2019년 6월 25일
Thank you (y)
Matt J
Matt J 2019년 10월 22일
편집: Matt J 2019년 10월 22일
Here is a generalization of the approach to arbitrary convex quadrilaterals. No particular orientation is assumed.
N=360;
theta=linspace(0,360,N);
[I,J]=find(Image);
IJ=[I,J];
c=nan(size(theta));
for i=1:N
[~,c(i)]=max(IJ*[cosd(theta(i));sind(theta(i))]);
end
H=histcounts(c,1:numel(I)+1);
[~,k] = maxk(H,4);
corners=IJ(k,:)

댓글을 달려면 로그인하십시오.

추가 답변 (4개)

Matt J
Matt J 2020년 2월 6일
Use pgonCorners from the File Exchange (Download). It applies to any convex polyhedron.
numVertices=4;
corners=pgonCorners(Image,numVertices)

Image Analyst
Image Analyst 2014년 5월 23일
편집: Image Analyst 2014년 5월 23일
Why not try the corner() function in the Image Processing Toolbox. What do you have against using that?
Or else call bwboundaries() and go along the coordinates looking for kinks in the curve as shown by the FAQ: http://matlab.wikia.com/wiki/FAQ#How_do_I_find_.22kinks.22_in_a_curve.3F
  댓글 수: 1
Mor
Mor 2014년 5월 24일
Hi,
Thanks for your answer. The reason I don't want to use the corner() function is because I have more pictures and in some of them the corner function doesn't work good (detects 2 corners is the same place) I think it's because the lines are not straight. maybe there is some configuration to make it work for every picture.

댓글을 달려면 로그인하십시오.


Matt J
Matt J 2014년 5월 24일
Maybe use edge() followed by houghlines() with an appropriate FillGap selection? The endpoints of the line segments returned by houghlines would be the corners of the quadrilateral.
  댓글 수: 3
Image Analyst
Image Analyst 2014년 5월 24일
If you need the exact corner, use (untested)
boundaries = bwboundaries(binaryImage);
x = boundaries{:,1};
y = boundaries{:,2};
and compare every x and y to see which is closest to the hough points
distances = sqrt((xh - x).^ 2 + (yh - y) .^ 2)
[minDistance, indexOfMin] = min(distances);
xc = x(indexOfMin);
yc = y(indexOfMin);
Do the above for each hough estimated point to find the point in the blob which is closest to the hough point (xh, yh).
Matt J
Matt J 2014년 5월 24일
편집: Matt J 2014년 5월 24일
You can be generous with the RhoResolution, given the large size of the quadrilateral. I get a pretty good fit to the edges with the following,
[H,T,R] = hough(E,'RhoResolution',4,'Theta',-90:.5:89);
Similar to what ImageAnalyst was saying, this initial line fit should allow you to segment the boundary points into 4 separate edges. You do this by finding the closest point to each initial line. You can then do a more refined line fit to each edge using each group of points (e.g., using polyfit).

댓글을 달려면 로그인하십시오.


Image Analyst
Image Analyst 2014년 5월 24일
If the quad is roughly aligned with the edges of the image you could also get the distance from the 4 corners. For each corner, take the one point on the white boundary that has the minimum distance. No need to mess with hough in that case.

카테고리

Help CenterFile Exchange에서 Geometric Transformation and Image Registration에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by