Is it possible to detect a specefic form of matrices from a big one?
조회 수: 5 (최근 30일)
이전 댓글 표시
Hello, I need to find those 5 forms of matrices from a binary 'big' matrice
X=[1 0 1 ;
0 1 0 ;
1 0 1 ;];
Y=[1 0 1 ;
0 1 0 ;
1 0 0 ;];
O=[0 1 0 ;
1 0 1 ;
0 1 0 ;];
-=[0 0 0 ;
1 1 1 ;
0 0 0 ;];
L=[1 0 0 ;
1 0 0 ;
1 1 1 ;];
Any idea? help is much appreciated
댓글 수: 3
채택된 답변
Cedric
2013년 11월 21일
편집: Cedric
2013년 11월 22일
EDITED: got rid of a side effect in the dash case (illustrated in the 4th picture below.. I didn't update it though) by using 2*A-1 instead of A and numel(X) instead of nnz(X).
Someone might provide you with a solution based on the Image Processing Toolbox (which I am not familiar with). Here is one potential solution and a hint in the meantime..
1. Based on CONV2
A = double( rand(10) > 0.4 ) ; % Small example.
X = [1 0 1 ; ...
0 1 0 ; ...
1 0 1 ] ;
ker = rot90(rot90( 2*X -1 )) ;
[r, c] = find( conv2(2*A-1, ker, 'same') == numel(X) ) ;
With that and a few runs (need a little luck for RAND to output one or more fillings with matches):
>> A
A =
1 1 1 1 1 1 0 1 0 1
0 0 0 1 1 0 1 1 0 1
1 0 0 0 0 1 0 1 0 1
1 0 1 0 1 0 1 1 1 1
0 1 0 1 0 1 1 1 1 0
0 1 1 0 1 0 0 1 1 0
0 1 1 0 1 1 0 0 0 1
0 1 0 0 1 0 1 1 1 1
0 1 0 1 1 1 1 0 1 1
1 1 0 1 0 1 1 1 0 0
>> [r,c]
ans =
5 4
3 6
which indicates two matches, centered in (5,4) and (3,6). This approach takes ~13ms on my laptop with a 1000x1001 A matrix.
2. By looping over elements of patterns and vectorizing tests on A rather than the opposite.
.. I leave that for later if CONV2 is not suitable.
--------------------------------------------------------------------------------------------------------------------------------
EDIT: here is a more elaborate example..
n = 50 ;
A = double( rand(n, n+1) > 0.5 ) ;
B = 2*A - 1 ;
patterns = {[1 0 1; 0 1 0; 1 0 1]; ... % X
[1 0 1; 0 1 0; 1 0 0]; ... % Y
[0 1 0; 1 0 1; 0 1 0]; ... % O
[0 0 0; 1 1 1; 0 0 0]; ... % -
[1 0 0; 1 0 0; 1 1 1]} ; % L
labels = {'X', 'Y', 'O', '-', 'L'} ;
matches = cell( size(labels )) ;
for pId = 1 : numel( patterns )
nel = numel( patterns{pId} ) ;
ker = 2*patterns{pId} - 1 ;
[r, c] = find( conv2(B, rot90(rot90(ker)), 'same') == nel ) ;
matches{pId} = [r, c] ;
figure(pId) ; clf ; hold on ;
spy(A) ;
plot( c, r, 'r+', 'MarkerSize', 20 ) ;
title( sprintf( 'Matches for "%s" pattern', labels{pId} )) ;
set( gcf, 'Units', 'normalized' ) ;
set( gcf, 'Position', [0 0 0.4 0.7] ) ;
end
which outputs the following figures..





댓글 수: 6
Cedric
2013년 11월 28일
편집: Cedric
2013년 11월 28일
Ok, this is quite different from what the initial question suggested. I would advise you to re-post the question including images of the skeleton and zooms over regions which represent the different patterns. You should also attach the source array or image so people can perform tests.
추가 답변 (2개)
Image Analyst
2013년 11월 26일
Try normalized cross correlation (see attached demo below in blue text), or the hit or miss transform, done by bwhitmiss() in the Image Processing Toolbox.
댓글 수: 0
참고 항목
카테고리
Help Center 및 File Exchange에서 Loops and Conditional Statements에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

