beta
Beta function
Syntax
Description
beta(
returns the
beta function of
x
,y
)x
and y
.
Examples
Compute Beta Function for Numeric Inputs
Compute the beta function for these numbers. Because these numbers are not symbolic objects, you get floating-point results:
[beta(1, 5), beta(3, sqrt(2)), beta(pi, exp(1)), beta(0, 1)]
ans = 0.2000 0.1716 0.0379 Inf
Compute Beta Function for Symbolic Inputs
Compute the beta function for the numbers converted to symbolic objects:
[beta(sym(1), 5), beta(3, sym(2)), beta(sym(4), sym(4))]
ans = [ 1/5, 1/12, 1/140]
If one or both parameters are complex numbers, convert these numbers to symbolic objects:
[beta(sym(i), 3/2), beta(sym(i), i), beta(sym(i + 2), 1 - i)]
ans = [ (pi^(1/2)*gamma(1i))/(2*gamma(3/2 + 1i)), gamma(1i)^2/gamma(2i),... (pi*(1/2 + 1i/2))/sinh(pi)]
Compute Beta Function for Negative Parameters
Compute the beta function for negative parameters. If one or both arguments are negative numbers, convert these numbers to symbolic objects:
[beta(sym(-3), 2), beta(sym(-1/3), 2), beta(sym(-3), 4), beta(sym(-3), -2)]
ans = [ 1/6, -9/2, Inf, Inf]
Compute Beta Function for Matrix Inputs
Call beta
for the matrix A
and
the value 1
. The result is a matrix of the beta functions
beta(A(i,j),1)
:
A = sym([1 2; 3 4]); beta(A,1)
ans = [ 1, 1/2] [ 1/3, 1/4]
Differentiate Beta Function
Differentiate the beta function, then substitute the variable
t with the value 2/3 and approximate the result using vpa
:
syms t u = diff(beta(t^2 + 1, t)) vpa(subs(u, t, 2/3), 10)
u = beta(t, t^2 + 1)*(psi(t) + 2*t*psi(t^2 + 1) -... psi(t^2 + t + 1)*(2*t + 1)) ans = -2.836889094
Expand Beta Function
Expand these beta functions:
syms x y expand(beta(x, y)) expand(beta(x + 1, y - 1))
ans = (gamma(x)*gamma(y))/gamma(x + y) ans = -(x*gamma(x)*gamma(y))/(gamma(x + y) - y*gamma(x + y))
Input Arguments
More About
Tips
The beta function is uniquely defined for positive numbers and complex numbers with positive real parts. It is approximated for other numbers.
Calling
beta
for numbers that are not symbolic objects invokes the MATLAB®beta
function. This function accepts real arguments only. If you want to compute the beta function for complex numbers, usesym
to convert the numbers to symbolic objects, and then callbeta
for those symbolic objects.If one or both parameters are negative numbers, convert these numbers to symbolic objects using
sym
, and then callbeta
for those symbolic objects.If the beta function has a singularity,
beta
returns the positive infinityInf
.beta(sym(0),0)
,beta(0,sym(0))
, andbeta(sym(0),sym(0))
returnNaN
.beta(x,y) = beta(y,x)
andbeta(x,A) = beta(A,x)
.At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix,
beta(x,y)
expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.
References
[1] Zelen, M. and N. C. Severo. “Probability Functions.” Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.
Version History
Introduced in R2014a