Main Content

이 페이지의 최신 내용은 아직 번역되지 않았습니다. 최신 내용은 영문으로 볼 수 있습니다.

다변량 회귀

다변량 응답 변수를 사용하는 선형 회귀


mvregress다변량 선형 회귀
mvregresslikeNegative log-likelihood for multivariate regression
polytoolInteractive polynomial fitting
polyconfPolynomial confidence intervals
plsregressPartial least-squares regression

예제 및 방법

Set Up Multivariate Regression Problems

To fit a multivariate linear regression model using mvregress, you must set up your response matrix and design matrices in a particular way.

Multivariate General Linear Model

This example shows how to set up a multivariate general linear model for estimation using mvregress.

Fixed Effects Panel Model with Concurrent Correlation

This example shows how to perform panel data analysis using mvregress.

Longitudinal Analysis

This example shows how to perform longitudinal analysis using mvregress.

부분 최소제곱 회귀 및 주성분 회귀

이 예제에서는 부분 최소제곱 회귀(PLSR) 및 주성분 회귀(PCR)를 적용하는 방법을 보여주고 이 두 방법의 효과를 설명합니다.


Multivariate Linear Regression

Large, high-dimensional data sets are common in the modern era of computer-based instrumentation and electronic data storage.

Estimation of Multivariate Regression Models

When you fit multivariate linear regression models using mvregress, you can use the optional name-value pair 'algorithm','cwls' to choose least squares estimation.

Partial Least Squares

Partial least squares (PLS) constructs new predictor variables as linear combinations of the original predictor variables, while considering the observed response values, leading to a parsimonious model with reliable predictive power.