Main Content

이 번역 페이지는 최신 내용을 담고 있지 않습니다. 최신 내용을 영문으로 보려면 여기를 클릭하십시오.

혼합효과

일반화 선형 혼합효과 모델

일반화 선형 혼합효과(GLME) 모델은 응답 변수를 모델링할 때 고정효과와 임의효과를 모두 포함합니다. 이 모델 유형은 군집화 변수의 임의효과를 포함하여 데이터 세트의 전역 추세와 국소 추세를 설명할 수 있습니다. GLME 모델은 응답 변수가 정규분포가 아닌 데이터에 대한 Linear Mixed-Effects Models(LME)의 일반화입니다. fitglme를 사용하여 GeneralizedLinearMixedModel 객체를 만듭니다.

클래스

GeneralizedLinearMixedModelGeneralized linear mixed-effects model class

함수

모두 확장

fitglmeFit generalized linear mixed-effects model
refit Refit generalized linear mixed-effects model
predictPredict response of generalized linear mixed-effects model
randomGenerate random responses from fitted generalized linear mixed-effects model
fittedFitted responses from generalized linear mixed-effects model
fixedEffectsEstimates of fixed effects and related statistics
randomEffectsEstimates of random effects and related statistics
anovaAnalysis of variance for generalized linear mixed-effects model
coefCIConfidence intervals for coefficients of generalized linear mixed-effects model
coefTestHypothesis test on fixed and random effects of generalized linear mixed-effects model
compareCompare generalized linear mixed-effects models
covarianceParametersExtract covariance parameters of generalized linear mixed-effects model
designMatrixFixed- and random-effects design matrices
partialDependenceCompute partial dependence (R2020b 이후)
residualsResiduals of fitted generalized linear mixed-effects model
responseResponse vector of generalized linear mixed-effects model
plotPartialDependenceCreate partial dependence plot (PDP) and individual conditional expectation (ICE) plots
plotResidualsPlot residuals of generalized linear mixed-effects model

도움말 항목

  • Fit a Generalized Linear Mixed-Effects Model

    This example shows how to fit a generalized linear mixed-effects model (GLME) to sample data.

  • Generalized Linear Mixed-Effects Models

    Generalized linear mixed-effects (GLME) models describe the relationship between a response variable and independent variables using coefficients that can vary with respect to one or more grouping variables, for data with a response variable distribution other than normal.

  • Wilkinson Notation

    Wilkinson notation provides a way to describe regression and repeated measures models without specifying coefficient values.