Estimate Lyapunov Exponent
Interactively estimate the Lyapunov exponent of a uniformly sampled signal in the Live Editor
Description
The Estimate Lyapunov Exponent task lets you interactively estimate the Lyapunov exponent of a uniformly sampled signal. The task automatically generates MATLAB® code for your live script. For more information about Live Editor tasks generally, see Add Interactive Tasks to a Live Script.
Use the Lyapunov exponent to characterize the rate of separation of infinitesimally close trajectories in phase space to distinguish different attractors. The Lyapunov exponent is useful in quantifying the level of chaos in a system, which in turn can be used to detect potential faults. A negative Lyapunov exponent indicates convergence, while a positive Lyapunov exponents indicates divergence and chaos.
Open the Task
To add the Estimate Lyapunov Exponent task to a live script in the MATLAB Editor:
On the Live Editor tab, select Task > Estimate Lyapunov Exponent.
In a code block in your script, type a relevant keyword, such as
Lyapunov
orLyapunov exponent
. SelectEstimate Lyapunov Exponent
from the suggested command completions.
Examples
Related Examples
Parameters
Select SignalSignal
— Uniformly sampled time-domain signal
array | timetable
Select a uniformly sampled time-domain signal in array or timetable format. If the signal has multiple columns, the Estimate Lyapunov Exponent task computes the Lyapunov exponent by treating it as a multivariate signal. If the signal is a row vector, then the Estimate Lyapunov Exponent task treats it as a univariate signal.
Signal Type
— Type of selected signal
'Time Domain
' | 'Phase space
'
Specify the type of the selected signal as either 'Time Domain
'
or 'Phase space
'. If you specify the signal type as:
'
Time Domain
', then also specify the embedding dimension and time lag for your signal.'
Phase space
', then the Estimate Correlation Dimension task automatically computes the embedding dimension and time lag using the phase space information.
Sampling Rate
— Sampling frequency of the data set
2π
(default) | scalar
Specify the sampling frequency of the data set as a scalar. The
Estimate Lyapunov Exponent task uses a value of
2π
or 6.283 Hz
by default. When the signal data
is in a timetable, the Estimate Lyapunov Exponent task
infers the sampling rate from the data set.
Embedding Dimension
— Number of dimensions of phase space vectors
scalar | vector
Specify the number of dimensions of phase space vectors as a scalar or vector from the MATLAB workspace. When you specify the embedding dimension as a scalar, then the Estimate Lyapunov Exponent task uses the same embedding dimension value to estimate the value of Lyapunov exponent for all the columns of the uniformly sampled signal.
The Embedding Dimension
drop down is active only when you
specify the signal type as 'Time Domain
'. For phase space signals,
the Estimate Lyapunov Exponent task automatically
computes the embedding dimension from the phase space data.
If you do not know the value of embedding dimension for your signal, then you can compute it using the Reconstruct Phase Space task.
Time Lag
— Time lag between successive phase vectors
scalar | vector
Specify time lag between successive phase vectors as a scalar or vector from the MATLAB workspace. When you specify the time lag as a scalar, then the Estimate Lyapunov Exponent task uses the same time delay value to estimate the value of Lyapunov exponent for all the columns of the uniformly sampled signal. If you specify the embedding dimension as a vector, then specify the time lag also as a vector of the same length.
The Time Lag
drop down is active only when you specify
the signal type as 'Time Domain
'. For phase space signals, the
Estimate Lyapunov Exponent task automatically
computes the time lag from the phase space data.
If you do not know the value of time lag for your signal, then you can compute it using the Reconstruct Phase Space task.
Expansion Range Min
— Minimum expansion step value
1
(default) | positive scalar integer
Specify the minimum expansion step value used to compute the expansion rate to estimate the Lyapunov exponent. Try different values such that the linear fit line aligns with the original data line in the plot.
Expansion Range Max
— Maximum expansion step value
5
(default) | positive scalar integer
Specify the maximum expansion step value used to compute the expansion rate to estimate the Lyapunov exponent. Try different values such that the linear fit line aligns with the original data line in the plot.
Mean Period
— Threshold value for nearest neighbor computation
ceil(fs/max(meanfreq(signal,sampling
rate)))
(default) | positive scalar integer
Specify the threshold value to compute the nearest neighbor i*
for a point i
to estimate the largest Lyapunov exponent. For more
information, see lyapunovExponent
.
Output Display
— Toggle result display in the Live Editor output
on (default) | off
Toggle to display the value of Lyapunov exponent in the Live Editor output.
Version History
Introduced in R2019b