Main Content

AlexNet을 사용한 전이 학습

이 예제에서는 사전 훈련된 AlexNet 컨벌루션 신경망이 새로운 영상 모음에 대해 분류를 수행하도록 미세 조정하는 방법을 보여줍니다.

1백만 개가 넘는 영상에 대해 훈련된 AlexNet은 영상을 키보드, 커피 머그잔, 연필, 각종 동물 등 1,000가지 사물 범주로 분류할 수 있습니다. 이 신경망은 다양한 영상을 대표하는 다양한 특징을 학습했습니다. 이 신경망은 영상을 입력값으로 받아서 영상에 있는 사물에 대한 레이블과 각 사물 범주의 확률을 출력합니다.

전이 학습은 딥러닝 응용 분야에서 널리 사용됩니다. 사전 훈련된 신경망을 새로운 작업을 학습하기 위한 출발점으로 사용할 수 있습니다. 전이 학습으로 신경망을 미세 조정하는 것은 무작위로 초기화된 가중치를 사용하여 신경망을 처음부터 훈련시키는 것보다 일반적으로 훨씬 더 빠르고 쉽습니다. 학습된 특징을 보다 적은 개수의 훈련 영상을 사용하여 새로운 작업으로 빠르게 전이할 수 있습니다.

데이터 불러오기

새 영상의 압축을 풀고 영상 데이터저장소로 불러옵니다. imageDatastore는 폴더 이름을 기준으로 영상에 자동으로 레이블을 지정하고 데이터를 ImageDatastore 객체로 저장합니다. 영상 데이터저장소를 사용하면 메모리에 담을 수 없는 데이터를 포함하여 다량의 영상 데이터를 저장할 수 있고 컨벌루션 신경망 훈련 중에 영상 배치를 효율적으로 읽어 들일 수 있습니다.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

데이터를 훈련 데이터 세트와 검증 데이터 세트로 나눕니다. 영상의 70%를 훈련용으로 사용하고 30%를 검증용으로 사용합니다. splitEachLabelimages 데이터저장소를 2개의 새로운 데이터저장소로 분할합니다.

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');

이 매우 작은 데이터 세트에는 이제 55개의 훈련 영상과 20개의 검증 영상이 포함됩니다. 샘플 영상 몇 개를 표시합니다.

numTrainImages = numel(imdsTrain.Labels);
idx = randperm(numTrainImages,16);
figure
for i = 1:16
    subplot(4,4,i)
    I = readimage(imdsTrain,idx(i));
    imshow(I)
end

사전 훈련된 신경망 불러오기

사전 훈련된 AlexNet 신경망과 해당 클래스 이름을 불러옵니다. 이 작업을 수행하려면 Deep Learning Toolbox™ Model for AlexNet Network 지원 패키지가 필요합니다. 이 지원 패키지가 설치되어 있지 않으면 다운로드 링크가 제공됩니다. 사용 가능한 모든 신경망 목록을 보려면 사전 훈련된 심층 신경망 항목을 참조하십시오.

classNames = categories(imdsTrain.Labels);
numClasses = numel(classNames)
numClasses = 5
net = imagePretrainedNetwork("alexnet",NumClasses=numClasses);
net = setLearnRateFactor(net,"fc8/Weights",20);
net = setLearnRateFactor(net,"fc8/Bias",20);

analyzeNetwork를 사용하여 신경망 아키텍처에 대한 대화형 방식 시각화와 신경망 계층에 대한 상세한 정보를 표시합니다.

analyzeNetwork(net)

첫 번째 계층인 영상 입력 계층에 입력되는 영상은 크기가 227×227×3이어야 합니다. 여기서 3은 색 채널의 개수입니다.

inputSize = net.Layers(1).InputSize
inputSize = 1×3

   227   227     3

신경망 훈련시키기

이 신경망의 입력 영상은 크기가 227×227×3이 되어야 하는데 영상 데이터저장소의 영상은 이와 다른 크기를 갖습니다. 증대 영상 데이터저장소를 사용하여 훈련 영상의 크기를 자동으로 조정합니다. 훈련 영상에 대해 추가로 수행할 증대 연산을 지정합니다. 즉, 세로 축을 따라 훈련 영상을 무작위로 뒤집고, 최대 30개의 픽셀을 가로와 세로 방향으로 무작위로 평행 이동합니다. 데이터 증대는 신경망이 과적합되는 것을 방지하고 훈련 영상의 정확한 세부 정보가 기억되지 않도록 하는 데 도움이 됩니다.

pixelRange = [-30 30];
imageAugmenter = imageDataAugmenter( ...
    'RandXReflection',true, ...
    'RandXTranslation',pixelRange, ...
    'RandYTranslation',pixelRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
    'DataAugmentation',imageAugmenter);

추가적인 데이터 증대를 수행하지 않고 검증 영상의 크기를 자동으로 조정하려면 증대 영상 데이터저장소를 추가적인 전처리 연산 지정 없이 사용하십시오.

augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

훈련 옵션을 지정합니다. 전이 학습을 위해, 사전 훈련된 신경망의 앞쪽 계층의 특징(전이된 계층 가중치)을 유지합니다. 전이된 계층의 학습을 늦추려면 초기 학습률을 작은 값으로 설정하십시오. 이전 단계에서는 새로운 마지막 계층의 학습 속도를 높이기 위해 완전 연결 계층의 학습률 인자를 증가시켰습니다. 이러한 조합으로 학습률을 설정하면 새로운 계층에서는 학습이 빨라지고 나머지 계층에서는 학습이 느려집니다. 전이 학습을 수행할 때는 많은 횟수의 Epoch에 대해 훈련을 진행하지 않아도 됩니다. Epoch 1회는 전체 훈련 데이터 세트에 대한 하나의 완전한 훈련 주기를 의미합니다. 미니 배치 크기와 검증 데이터를 지정합니다. 훈련 중에 ValidationFrequency번의 반복마다 신경망이 검증됩니다.

options = trainingOptions("sgdm", ...
    MiniBatchSize=10, ...
    MaxEpochs=6, ...
    Metrics="accuracy", ...
    InitialLearnRate=1e-4, ...
    Shuffle="every-epoch", ...
    ValidationData=augimdsValidation, ...
    ValidationFrequency=3, ...
    Verbose=false, ...
    Plots="training-progress");

trainnet 함수를 사용하여 신경망을 훈련시킵니다. 분류에는 교차 엔트로피 손실을 사용합니다. 기본적으로 trainnet 함수는 GPU를 사용할 수 있으면 GPU를 사용합니다. GPU에서 훈련시키려면 Parallel Computing Toolbox™ 라이선스와 지원되는 GPU 장치가 필요합니다. 지원되는 장치에 대한 자세한 내용은 GPU 연산 요구 사항 (Parallel Computing Toolbox) 항목을 참조하십시오. GPU를 사용할 수 없는 경우, trainnet 함수는 CPU를 사용합니다. 실행 환경을 지정하려면 ExecutionEnvironment 훈련 옵션을 사용하십시오.

net = trainnet(augimdsTrain,net,"crossentropy",options);

검증 영상 분류하기

검증 영상을 분류합니다. 여러 개의 관측값을 사용하여 예측을 수행하려면 minibatchpredict 함수를 사용합니다. 예측 점수를 레이블로 변환하려면 scores2label 함수를 사용합니다. minibatchpredict 함수는 GPU를 사용할 수 있으면 자동으로 GPU를 사용합니다. GPU를 사용하려면 Parallel Computing Toolbox™ 라이선스와 지원되는 GPU 장치가 필요합니다. 지원되는 장치에 대한 자세한 내용은 GPU 연산 요구 사항 (Parallel Computing Toolbox) 항목을 참조하십시오. GPU를 사용할 수 없는 경우, 함수는 CPU를 사용합니다.

scores = minibatchpredict(net,augimdsValidation);
YPred = scores2label(scores,classNames);

4개의 샘플 검증 영상을 예측된 레이블과 함께 표시합니다.

idx = randperm(numel(imdsValidation.Files),4);
figure
for i = 1:4
    subplot(2,2,i)
    I = readimage(imdsValidation,idx(i));
    imshow(I)
    label = YPred(idx(i));
    title(string(label));
end

검증 세트에 대한 분류 정확도를 계산합니다. 정확도는 신경망이 올바르게 예측하는 레이블의 비율입니다.

YValidation = imdsValidation.Labels;
accuracy = mean(YPred == YValidation)
accuracy = 0.9500

분류 정확도를 높이기 위한 팁을 보려면 딥러닝 팁과 요령 항목을 참조하십시오.

참고 문헌

[1] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet Classification with Deep Convolutional Neural Networks." Advances in neural information processing systems. 2012.

[2] BVLC AlexNet Model. https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet

참고 항목

| | | |

관련 항목