이 번역 페이지는 최신 내용을 담고 있지 않습니다. 최신 내용을 영문으로 보려면 여기를 클릭하십시오.
딥러닝을 사용한 영상 처리
Deep Learning Toolbox™를 Image Processing Toolbox™ 및 Medical Imaging Toolbox™와 함께 사용하여 영상 처리 응용 분야에 딥러닝을 적용합니다.
앱
Medical Image Labeler | Interactively explore, label, and publish animations of 2-D or 3-D medical image data |
함수
augmentedImageDatastore | 배치를 변환하여 영상 데이터 증대 |
randomPatchExtractionDatastore | Datastore for extracting random 2-D or 3-D random patches from images or pixel label images |
blockedImageDatastore | Datastore for use with blocks from blockedImage
objects |
도움말 항목
- Preprocess Data for Domain-Specific Deep Learning Applications
Perform deterministic or randomized data processing for domains such as image processing, object detection, semantic segmentation, signal and audio processing, and text analytics.
- Augment Images for Deep Learning Workflows
This example shows how you can perform common kinds of randomized image augmentation such as geometric transformations, cropping, and adding noise.
- 딥러닝을 위해 영상 전처리하기
훈련, 예측 및 분류를 위해 영상의 크기를 조정하는 방법과 데이터 증대, 변환 및 특화된 데이터저장소를 사용하여 영상을 전처리하는 방법을 알아봅니다.
- Preprocess Volumes for Deep Learning
Read and preprocess volumetric image and label data for 3-D deep learning.
- Preprocess Multiresolution Images for Training Classification Network (Image Processing Toolbox)
This example shows how to prepare datastores that read and preprocess multiresolution whole slide images (WSIs) that might not fit in memory.
- Get Started with GANs for Image-to-Image Translation (Image Processing Toolbox)
Transfer styles and characteristics from one set of images to the scene content of other images by using generative adversarial networks (GANs).
- Create Datastores for Medical Image Semantic Segmentation (Medical Imaging Toolbox)
Create datastores that contain images and pixel label data from a
groundTruthMedical
object for training semantic segmentation deep learning networks.