이 번역 페이지는 최신 내용을 담고 있지 않습니다. 최신 내용을 영문으로 보려면 여기를 클릭하십시오.
엔드 투 엔드 AI 워크플로
요구 사항 정의부터 데이터 준비, 심층 신경망 훈련, 압축, 신경망 테스트 및 검증, Simulink 통합, 배포에 이르는 엔드 투 엔드 워크플로에 Deep Learning Toolbox™를 사용합니다.

도움말 항목
- Battery State of Charge Estimation Using Deep Learning
Define requirements, prepare data, train deep learning networks, verify robustness, integrate networks into Simulink, and deploy models. (R2024b 이후)
- 단계 1: Define Requirements for Battery State of Charge Estimation
- 단계 2: Prepare Data for Battery State of Charge Estimation Using Deep Learning
- 단계 3: Train Deep Learning Network for Battery State of Charge Estimation
- 단계 4: Compress Deep Learning Network for Battery State of Charge Estimation
- 단계 5: Test Deep Learning Network for Battery State of Charge Estimation
- 단계 6: Integrate AI Model into Simulink for Battery State of Charge Estimation
- 단계 7: Generate Code for Battery State of Charge Estimation Using Deep Learning
- Train and Compress AI Model for Road Damage Detection
Train and compress a sequence classification network using pruning, projection, and quantization to meet a fixed memory requirement. (R2025a 이후)
- 단계 1: Train Sequence Classification Network for Road Damage Detection
- 단계 2: Compress Sequence Classification Network for Road Damage Detection
- 단계 3: Tune Compression Parameters for Sequence Classification Network for Road Damage Detection
- 단계 4: Generate Simulink Model from Sequence Classification Network for Road Damage Detection
- Verify an Airborne Deep Learning System
This example shows how to verify a deep learning system for airborne applications and is based on the work in [5,6,7], which includes the development and verification activities required by DO-178C [1], ARP4754A [2], and prospective EASA and FAA guidelines [3,4]. (R2023b 이후)