This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.


Create corner reflector-backed antenna


Use the reflectorCorner object to create a corner reflector-backed antenna. By default, the exciter antenna is a dipole. The feedpoint of the dipole is at the origin. The default dimensions are for an operating frequency of 1 GHz.



cornerreflector = reflectorCorner
cornerreflector = reflectorCorner(Name,Value)



cornerreflector = reflectorCorner creates a corner reflector backed dipole antenna for an operating frequency of 1 GHz using default values.

cornerreflector = reflectorCorner(Name,Value) sets properties using one or more name-value pairs. For example, cornerreflector = reflectorCorner('CornerAngle',45) creates a corner reflector-backed antenna with a corner angle of 45 degrees. Enclose each property name in quotes.


expand all

Antenna type used as an exciter, specified as an antenna object. Except for reflector and cavity antenna elements, you can use any of the single elements in the Antenna Toolbox™ as an exciter.

Example: 'Exciter',spiralEquiangular

Example: cornerreflector.Exciter = spiralEquiangular

Distance between exciter and reflector, specified as a scalar in meters.

Example: 'Spacing',0.0624

Example: cornerreflector.Spacing = 0.0624

Data Types: double

Angle made by corner reflector, specified as a scalar in degrees.

Example: 'CornerAngle',60

Example: cornerreflector.CornerAngle = 60

Data Types: double

Reflector length along the X-axis, specified as a scalar in meters. By default, ground plane length is measured along the X-axis. You can also set the 'GroundPlaneLength' to zero.

Example: 'GroundPlaneLength',0.4000

Example: cornerreflector.GroundPlaneLength = 0.4000

Data Types: double

Reflector width along the Y-axis, specified as a scalar in meters. By default, ground plane width is measured along the Y-axis. You can also set the 'GroundPlaneWidth' to zero.

Example: 'GroundPlaneWidth',0.6000

Example: cornerreflector.GroundPlaneWidth = 0.6000

Data Types: double

Loads added to the antenna feed, specified as a lumped element object. You can add a load anywhere on the surface of the antenna. By default, the load is at the origin. For more information, see lumpedElement.

Example: 'Load',lumpedelement, where, lumpedelement is the object handle for the load created using lumpedElement.

Example: cornerreflector.Load = lumpedElement('Impedance',75)

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more information, see Rotate Antenna and Arrays.

Example: 'Tilt',90

Example: 'Tilt',[90 90]'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degree about two three-element vector points in space.

Data Types: double

Tilt axis of the antenna, specified as:

  • Three-element vectors of Cartesian coordinates in meters. In this case, each vector starts at the origin and lies along the specified points on the X-, Y-, and Z- axes.

  • Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case, the antenna rotates around the line joining the two points in space.

  • A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see Rotate Antenna and Arrays.

Example: 'TiltAxis',[0 1 0]

Example: 'TiltAxis',[0 0 0;0 1 0]

Example: ant.TiltAxis = 'Z'

Object Functions

showDisplay antenna or array structure; Display shape as filled patch
axialRatioAxial ratio of antenna
beamwidthBeamwidth of antenna
chargeCharge distribution on metal or dielectric antenna or array surface
currentCurrent distribution on metal or dielectric antenna or array surface
designDesign prototype antenna or arrays for resonance at specified frequency
EHfieldsElectric and magnetic fields of antennas; Embedded electric and magnetic fields of antenna element in arrays
impedanceInput impedance of antenna; scan impedance of array
meshMesh properties of metal or dielectric antenna or array structure
meshconfigChange mesh mode of antenna structure
patternRadiation pattern and phase of antenna or array; Embedded pattern of antenna element in array
patternAzimuthAzimuth pattern of antenna or array
patternElevationElevation pattern of antenna or array
returnLossReturn loss of antenna; scan return loss of array
sparametersS-parameter object
vswrVoltage standing wave ratio of antenna


collapse all

Create and view a corner reflector-backed dipole.

cornerreflector = reflectorCorner
cornerreflector = 
  reflectorCorner with properties:

              Exciter: [1x1 dipole]
    GroundPlaneLength: 0.2000
     GroundPlaneWidth: 0.4000
          CornerAngle: 90
              Spacing: 0.0750
                 Tilt: 0
             TiltAxis: [1 0 0]
                 Load: [1x1 lumpedElement]


Plot the radiation pattern at 1 GHz.


Introduced in R2018a