MathWorks - Mobile View
  • MathWorks 계정에 로그인합니다.MathWorks 계정에 로그인합니다.
  • Access your MathWorks Account
    • 내 계정
    • 나의 커뮤니티 프로필
    • 라이선스를 계정에 연결
    • 로그아웃
  • 제품
  • 솔루션
  • 아카데미아
  • 지원
  • 커뮤니티
  • 이벤트
  • MATLAB 다운로드
MathWorks
  • 제품
  • 솔루션
  • 아카데미아
  • 지원
  • 커뮤니티
  • 이벤트
  • MATLAB 다운로드
  • MathWorks 계정에 로그인합니다.MathWorks 계정에 로그인합니다.
  • Access your MathWorks Account
    • 내 계정
    • 나의 커뮤니티 프로필
    • 라이선스를 계정에 연결
    • 로그아웃

비디오 및 웨비나

  • MathWorks
  • 비디오
  • 비디오 홈
  • 검색
  • 비디오 홈
  • 검색
  • 영업 상담
  • 평가판 신청
  Register to watch video
  • Description
  • Full Transcript
  • Related Resources

Quantizing a Deep Learning Network in MATLAB

Ram Cherukuri, MathWorks

In this video, we demonstrate the deep learning quantization workflow in MATLAB. Using the Model Quantization Library Support Package, we illustrate how you can calibrate, quantize, and validate a deep learning network such as Resnet50. We also highlight the impact of quantization on reducing the memory of some standard networks such as Resnet101 and InceptionV3.

 

Deep Learning quantization is a key optimization strategy for efficient deployment of deep learning networks, particularly on embedded platforms.

I am Ram Cherukuri, senior product manager at MathWorks and in this video I will give you an overview of the deep learning quantization workflow in MATLAB.

Quantizing the weights, biases, and activations to lower precision data types like INT8 or FP16 significantly reduces the memory footprint of the AI algorithm and can result in improved inference performance on the embedded hardware.

You can use the Model Quantization Library Support Package for quantizing your deep learning network in MATLAB. You can download it from the Add-On Explorer as shown here.

The quantization workflow leverages instrumentation, based on a calibration datastore to compute the instrumentation statistics that are used to quantize the weights, biases, and activations of the layers of the network.

Finally, the validation step computes accuracy metrics to analyze and understand the impact of quantization on the accuracy of the network. Let’s take Resnet50 as an example network to go through this workflow.

Here is the Deep Learning Quantizer app, where you first import the network from the MATLAB workspace and you will see the network structure displayed on the left side pane.

Next, you select the data store that you would like to use for calibration and the app displays the computed statistics such as the min and max values of weights, biases, and activations of each layer. You can also choose the layers that you can quantize and then validate the impact of quantization using a validation datastore.

In this example, we have used the default top 1 accuracy metric and you can see that there is a 67% reduction in memory with no drop in accuracy.  You can then proceed to generate code from the quantized network for deployment.

We repeated this workflow with a few networks, only quantizing the compute-intensive conv layers to INT8.

You can see the impact of quantization in the chart here. For instance, the largest network here with 180 MB in memory, Resnet101, sees 72% compression with 2% drop in accuracy. InceptionV3, on the other hand, has the largest drop in accuracy of 4%, with 67% compression, going from 100 MB to 33 MB in memory.

This highlights the significant impact of quantization for efficient deployment of deep learning networks.

Please refer to the resources below the video to learn how to get started and explore these new capabilities in MATLAB.

Related Products

  • Deep Learning Toolbox
  • GPU Coder

Learn More

Download the support package
What Is int8 Quantization and Why Is It Popular for Deep Neural Networks?
INT8 Quantization with Deep Network Quantizer
Quantization of Deep Neural Networks
Related Information
Try out the Deep Network Quantizer app

Feedback

Featured Product

Deep Learning Toolbox

  • Request Trial
  • Get Pricing

Up Next:

24:56
Optimal Neural Network for Automotive Product Development

Related Videos:

7:35
Deep Learning for Computer Vision with MATLAB (Highlights)
29:45
CAN Communication with Your ECUs and the Vehicle Network...
27:59
Deep Learning for Computer Vision
46:41
Aircraft Power Network Development with Model-Based Design

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

Select web site

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • 영업 상담
  • 평가판 신청

제품 소개

  • MATLAB
  • Simulink
  • 학생용 소프트웨어
  • 하드웨어 지원
  • File Exchange

다운로드 및 구매

  • 다운로드
  • 평가판 신청
  • 영업 상담
  • 가격 및 라이선스
  • MathWorks 스토어

사용 방법

  • 문서
  • 튜토리얼
  • 예제
  • 비디오 및 웨비나
  • 교육

지원

  • 설치 도움말
  • 사용자 커뮤니티
  • 컨설팅
  • 라이선스 센터
  • 지원 문의

회사 정보

  • 채용
  • 뉴스 룸
  • 사회적 미션
  • 영업 상담
  • 회사 정보

MathWorks

Accelerating the pace of engineering and science

MathWorks는 엔지니어와 과학자들을 위한 테크니컬 컴퓨팅 소프트웨어 분야의 선도적인 개발업체입니다.

활용 분야 …

  • Select a Web Site United States
  • 특허
  • 등록 상표
  • 정보 취급 방침
  • 불법 복제 방지
  • 매스웍스코리아 유한회사
  • 주소: 서울시 강남구 삼성동 테헤란로 521 파르나스타워 14층
  • 전화번호: 02-6006-5100
  • 대표자 : 이종민
  • 사업자 등록번호 : 120-86-60062

© 1994-2021 The MathWorks, Inc.

  • Naver
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • RSS

대화에 참여하기