Predictive Maintenance with MATLAB: A Data-Based Approach
Overview
Do you work with operational equipment that collects sensor data? In this seminar, you will learn how you can utilize that data for Predictive Maintenance, the intelligent health monitoring of systems to avoid future equipment failure. Rather than following a traditional maintenance timeline, predictive maintenance schedules are determined by analytic algorithms and data from sensors. With predictive maintenance, organizations can identify issues before equipment fails, pinpoint the root cause of the failure, and schedule maintenance as soon as it’s needed.
Highlights
- Accessing and preprocessing data from a variety of sources
- Using machine learning to develop predictive models
- Creating dashboards for visualizing and interacting with model results
- Deploying predictive algorithms in production systems and embedded devices
- Using simulation to generate data for expensive or hard-to-reproduce failures
About the Presenters
Russell Graves is an Application Engineer at MathWorks focused on machine learning and systems engineering. Prior to joining MathWorks, Russell worked with the University of Tennessee and Oak Ridge National Laboratory in intelligent transportation systems research with a focus on multi-agent machine learning and complex systems controls. Russell holds a B.S. and M.S. in Mechanical Engineering from The University of Tennessee and is a late-stage mechanical engineering doctoral candidate.
Recorded: 26 Oct 2021
Featured Product
Predictive Maintenance Toolbox
Up Next:
Related Videos:
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
아시아 태평양
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)