Skip to content
MathWorks - Mobile View
  • MathWorks 계정에 로그인합니다.MathWorks 계정에 로그인합니다.
  • Access your MathWorks Account
    • 내 계정
    • 나의 커뮤니티 프로필
    • 라이선스를 계정에 연결
    • 로그아웃
  • 제품
  • 솔루션
  • 아카데미아
  • 지원
  • 커뮤니티
  • 이벤트
  • MATLAB 받기
MathWorks
  • 제품
  • 솔루션
  • 아카데미아
  • 지원
  • 커뮤니티
  • 이벤트
  • MATLAB 받기
  • MathWorks 계정에 로그인합니다.MathWorks 계정에 로그인합니다.
  • Access your MathWorks Account
    • 내 계정
    • 나의 커뮤니티 프로필
    • 라이선스를 계정에 연결
    • 로그아웃

비디오 및 웨비나

  • MathWorks
  • 비디오
  • 비디오 홈
  • 검색
  • 비디오 홈
  • 검색
  • 영업 담당 문의
  • 평가판 신청
3:46 Video length is 3:46.
  • Description
  • Full Transcript
  • Related Resources

Implement Maximum Power Point Tracking Algorithms Using MATLAB and Simulink

MPPT algorithms are used to control the duty cycle or the operating voltage of a photovoltaic system to ensure maximum power at all times.

This video elaborates on three of the most common MPPT algorithms:

  • Perturb and Observe (P&O): This is the most widely used algorithm in the industry. It involves perturbation of the operating voltage or the duty cycle based on a comparison of the generated power. This ensures maximum power point. This algorithm can be implemented in Simulink® using several methods. This example uses a MATLAB® function block and a standard block from the Simulink library that lets you implement the algorithm using the MATLAB language.
  • Incremental Conductance: This algorithm is slightly more complex and robust. The central idea is that the incremental conductance is compared to the instantaneous conductance, and the duty cycle is adjusted accordingly. This example uses a Stateflow® chart within Simulink to implement the logic. Using Stateflow, you can implement state machines and logic charts. 
  • Fraction Open Circuit Voltage: This algorithm is different from the first two and is based on the principle that the maximum power point voltage is always a constant fraction of the open circuit voltage.

Download a free power electronics control design trial

In this video, I'm going to show how to implement three common MPPT algorithms using MATLAB and Simulink to control the duty cycle or the operating voltage of a PV system. If you would like to learn more about why MPPT algorithms are used, please watch the video Why Use MPPT?

First, I'll talk about the perturb and observe algorithm. Here is a simple flowchart representation of this algorithm. Perturb and observe algorithm is most widely used in the industry today. And as you can see, this algorithm involves perturbation of operating voltage, or the duty cycle, based on the comparison of the power generated to ensure maximum power point.

This algorithm can be implemented in Simulink using several methods. For this example, I used MATLAB function block, a standard block from Simulink library that lets you implement the algorithm using MATLAB language. When you simulate the model, this MATLAB code is converted into C code and is compiled along with other blocks in the model. Notice that it is very simple to implement this algorithm using conditional statements within MATLAB, as you can see here.

Next, I want to show the implementation of incremental conductance algorithm. Again, here is a flowchart that shows a simple representation of this algorithm. This algorithm is slightly complex and more robust in nature. And the central idea in this is that the incremental conductance is compared to the instantaneous conductance, and the duty cycle is adjusted accordingly.

For this example, I'm using a Stateflow chart within Simulink to implement the logic. Using Stateflow, you can represent state machines and logic charts. If you notice closely, the logic in the Stateflow diagram looks almost the same as it is in the flowchart. One of the cool things is that when I simulate the model, you can see that the graphical interface shows an animation of how the logic transitions are occurring.

For the last one, let me open the model which shows a complete system. As you can see, we have a PV array and a DC/DC converter that is being controlled by DC/DC buck controls which implements the MPPT algorithm. This algorithm is different from the first two and is called fractional open circuit voltage algorithm, which is based on the principle that the maximum power point voltage is always a constant fraction of the open circuit voltage. So the open circuit voltage of the cells in the photovoltaic array is measured and used as an input here. In this case, as you see, I'm using 82% of the open circuit voltage just the input.

Before I run the simulation, I would like to point out that I have chosen the irradiance input to be 800 watts per meter square using a Signal Builder block. And you will notice here that the table says the maximum power must be around 2,000 watts for 800 watts for meter square irradiance. Using the Signal Builder block, you can provide custom inputs to the model. You can also bring in real irradiance data and use it as an input for the simulation.

Now, if I hit the Play button, you will notice that the power generated is maximum at around 2,000 watts as expected. We have seen the implementation of three different maximum power point tracking algorithms, or MPPT algorithms, using MATLAB and Simulink in this video.

Related Products

  • Simulink
  • Simscape Electrical

Learn More

Get packaged trial
Simulink for Power Electronics Control Design Resources
Developing Solar Inverter Control with Simulink (3 videos)
MPPT Algorithm Resources
Join the Power Electronics Control Design Community
Take the Quiz: How Much Do You Know About Power Electronics Control Design?

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper

READ EBOOKLET

Design Power Conversion Controls Faster with Simulink

Feedback

Up Next:

2:29
Maximum Power Point Tracking Algorithm Overview

Related Videos:

10:02
Using Simulink for Control Algorithms with LEGO
2:04
Incorporating MATLAB Algorithms into a Simulink Model
10:58
Mechatronics with MATLAB and Simulink, Part 1: Accuracy,...
39:21
Developing and Verifying Active Safety Features Using...

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • 영업 담당 문의
  • 평가판 신청

MathWorks

Accelerating the pace of engineering and science

MathWorks는 엔지니어와 과학자들을 위한 테크니컬 컴퓨팅 소프트웨어 분야의 선도적인 개발업체입니다.

활용 분야 …

제품 소개

  • MATLAB
  • Simulink
  • 학생용 소프트웨어
  • 하드웨어 지원
  • File Exchange

다운로드 및 구매

  • 다운로드
  • 평가판 신청
  • 영업 상담
  • 가격 및 라이선스
  • MathWorks 스토어

사용 방법

  • 문서
  • 튜토리얼
  • 예제
  • 비디오 및 웨비나
  • 교육

지원

  • 설치 도움말
  • MATLAB Answers
  • 컨설팅
  • 라이선스 센터
  • 지원 문의

회사 정보

  • 채용
  • 뉴스 룸
  • 사회적 미션
  • 고객 사례
  • 회사 정보
  • Select a Web Site United States
  • 신뢰 센터
  • 등록 상표
  • 정보 취급 방침
  • 불법 복제 방지
  • 애플리케이션 상태
  • 매스웍스코리아 유한회사
  • 주소: 서울시 강남구 삼성동 테헤란로 521 파르나스타워 14층
  • 전화번호: 02-6006-5100
  • 대표자 : 이종민
  • 사업자 등록번호 : 120-86-60062

© 1994-2022 The MathWorks, Inc.

  • Naver
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • RSS

대화에 참여하기