Electricity Load and Price Forecasting with MATLAB
In this webinar, you will learn how MATLAB can be used to forecast short-term electricity loads and prices. Nonlinear regression and neural network modeling techniques are used to demonstrate accurate modeling using historical, seasonal, day-of-the week, and temperature data.
Highlights include:
• Forecasting short-term electricity loads and prices
• Accessing data from regional wholesale electricity markets
• “White-box” modeling using customizable algorithms and viewable-source functions
• Deploying and integrating an energy load forecaster
This webinar is for practitioners at power generators, utilities or energy trading groups whose focus is transmission planning, distribution operations, derivative valuation, or quantitative analysis. Familiarity with MATLAB is not required.
View MATLAB code from this webinar on MATLAB Central.
NOTE: As of R2015a, the Application Deployment products referenced in this video have changed. For the details of this transition, please watch a short video on the Application Deployment R2015a Transition.
About the Presenter: Ameya Deoras is an application engineer at MathWorks with a focus on the Finance industry. Prior to joining MathWorks in 2008, Ameya undertook graduate research in computational gene prediction as well as robust speech recognition, both involving building statistical models for pattern recognition on large datasets using MATLAB. Ameya holds a B.S. in Electrical Engineering from the University of Illinois and an M.S. in Electrical Engineering from the Massachusetts Institute of Technology.
Recorded: 8 Sep 2010
Featured Product
MATLAB
Up Next:
Related Videos:
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
아시아 태평양
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)