Principal Component Analysis (PCA) on images in MATLAB (GUI)
버전 1.0.5 (12.2 MB) 작성자:
ABHILASH SINGH
Principal Component Analysis (PCA) on images in MATLAB (GUI)
First, upload a colour image by clicking on the “upload an image button”. The acceptable image formats are png, jpg, jpeg, img and tif. Then click on the "Plot the grayscale image". After that enter the no. of PC's up to which you want to retrieve the images (both colour and grayscale).
An error message/box will pop-up when you enter a number greater than the no. of PCs for that particular image. Also, an error will message will pop-up when the entered input is not a number.
Please go through this link for detail explanation;
For a detail understanding of PCA, please refer my lecture on PCA;
https://www.youtube.com/watch?v=ZLpQ6cbHxmY
Enjoy!!!
인용 양식
ABHILASH SINGH (2024). Principal Component Analysis (PCA) on images in MATLAB (GUI) (https://github.com/abhilash12iec002/Principal-Component-Analysis-PCA-on-images-in-MATLAB-GUI-), GitHub. 검색 날짜: .
MATLAB 릴리스 호환 정보
개발 환경:
R2019b
모든 릴리스와 호환
플랫폼 호환성
Windows macOS Linux카테고리
- AI and Statistics > Statistics and Machine Learning Toolbox > Dimensionality Reduction and Feature Extraction >
Help Center 및 MATLAB Answers에서 Dimensionality Reduction and Feature Extraction에 대해 자세히 알아보기
태그
도움
도움 받은 파일: Real Time Object Detection using Deep Learning.
도움 준 파일: Principal Component Analysis (PCA) on LANDSAT-8 imagery, Linear Regression plot with Confidence Intervals in MATLAB, Verifying convolution theorem in image processing (2-D)
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!GitHub 디폴트 브랜치를 사용하는 버전은 다운로드할 수 없음
버전 | 게시됨 | 릴리스 정보 | |
---|---|---|---|
1.0.5 | Added video link. |
|
|
1.0.4 | Link update |
|
|
1.0.3 |
|
||
1.0.2 | GitHub upload |
|
|
1.0.1 | Increases the no. of acceptable image format. |
||
1.0.0 |
이 GitHub 애드온의 문제를 보거나 보고하려면 GitHub 리포지토리로 가십시오.
이 GitHub 애드온의 문제를 보거나 보고하려면 GitHub 리포지토리로 가십시오.