KMeans for big data using preconditioning and sparsification, Matlab implementation. This has three main features:
(1) it has good code: same accuracy and 100x faster than Matlab's K-means for some cases. It also incorporates the latest research, such as using K-Means++ for the initialization (Note: Matlab's R2015 K-Means now uses K-Means++ too). The code is well-documented and conforms to the conventions of Matlab's K-means function when possible.
(2) optionally, you can enable the precondition-and-sample feature which is a novel method to allow efficient processing when the datasets are extremely large and slow to work with.
(3) for datasets that are a few TB in size, you can use the read-from-disk option so that the entire matrix is never loaded into RAM all at once.
Installation is easy; run `setup_kmeans.m` and it will install the mex files for you if necessary, and setup the appropriate paths.
인용 양식
Stephen Becker (2025). Sparsified K-Means (https://github.com/stephenbeckr/SparsifiedKMeans), GitHub. 검색 날짜: .
MATLAB 릴리스 호환 정보
플랫폼 호환성
Windows macOS Linux카테고리
태그
도움
도움 받은 파일: KMeans Segmentation - MEX, k-means++, Fast K-means, Fast K-means clustering, Fast kmeans Algorithm Code, K-means clustering
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!private
GitHub 디폴트 브랜치를 사용하는 버전은 다운로드할 수 없음
버전 | 게시됨 | 릴리스 정보 | |
---|---|---|---|
1.0.0.0 | Fixed typos in the description, no change to code (but github version is updated regularly) |
|