How to change the default range of hyperparameters in fitcecoc function?

조회 수: 8 (최근 30일)
Is it possible to change the default paramater search range of fitcecoc function? I am trying to find the optimal paramters for SVM in custom range to reduce computational time. For example, I am trying to set below range for following parameters.
BoxConstraint = Positive values log-scaled in the range [1e-3,10]
KernelScale = Positive values log-scaled in the range [1e-3,10]
KernelFunction ='gaussian', , and 'polynomial'
Any suggestions in this regard would be highly appreciated.
Demo Example:
clc
clear all
load fisheriris
t = templateSVM();
results = fitcecoc(meas, species,'Learners',t,'OptimizeHyperparameters','auto',...
'HyperparameterOptimizationOptions',struct('Optimizer',...
'randomsearch'))
T=results.HyperparameterOptimizationResults
  댓글 수: 3
Don Mathis
Don Mathis 2021년 7월 26일
Walter Roberson's answer is correct. And then you pass 'params' as the value of the 'OptimizeHyperparameters' parameter.
Machine Learning Enthusiast
Machine Learning Enthusiast 2021년 7월 26일
Thank you. How to change other parameters? For instance, for kernal functiion, I am trying to search only guassian and polynomial in the search space.
Name: 'KernelFunction'
Range: {'gaussian' 'linear' 'polynomial'}
Type: 'categorical'
Transform: 'none'
Optimize: 0
Name: 'Coding'
Range: {'onevsall' 'onevsone'}
Type: 'categorical'
Transform: 'none'
Optimize: 1

댓글을 달려면 로그인하십시오.

채택된 답변

Walter Roberson
Walter Roberson 2021년 7월 26일
Set nondefault parameters by passing a vector of optimizableVariable objects that have nondefault values. For example,
load fisheriris
params = hyperparameters('fitcecoc',meas,species,'svm');
params(2).Range = [1e-4,1e6];
After you created params look at
{params.Name}
to see which variable is which, to know which one to set the Range for.
  댓글 수: 2
Machine Learning Enthusiast
Machine Learning Enthusiast 2021년 7월 26일
Thank you. How to change other parameters? For instance, for kernal functiion, I am trying to search only guassian and polynomial in the search space.
Name: 'KernelFunction'
Range: {'gaussian' 'linear' 'polynomial'}
Type: 'categorical'
Transform: 'none'
Optimize: 0
Name: 'Coding'
Range: {'onevsall' 'onevsone'}
Type: 'categorical'
Transform: 'none'
Optimize: 1
Walter Roberson
Walter Roberson 2021년 8월 1일
I think you should be able to do
params(4).Range = {'gaussian', 'polynomial'};

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Classification Ensembles에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by