What parameters are optimized by default when the crossval-on name-value pair option is used in the fitrensemble function?
조회 수: 3 (최근 30일)
이전 댓글 표시
For eg, when the following command is used, what parameters/hyperparamters are validated by default when the crossval-on name-value pair option is used in the fitrensemble function?
rng(1);
t = templateTree('MaxNumSplits',1);
Mdl = fitrensemble(X,MPG,'Learners',t,'CrossVal','on');
댓글 수: 0
답변 (1개)
Aditya Patil
2021년 7월 12일
Cross validation splits the data into K partitions. Then it trains the models on the K permutations of (K - 1) sets and validates it on the remaining 1 set. For example, if you use 10-fold validation, it will train on 9 different permutations of the sets, each having 9 sets for training, and 1 for validation.
As such, there is no dependence on the parameters of the model.
댓글 수: 0
참고 항목
카테고리
Help Center 및 File Exchange에서 Regression Tree Ensembles에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!