Build a relation between matrix components

조회 수: 1 (최근 30일)
MarshallSc
MarshallSc 2021년 6월 30일
댓글: Rik 2021년 8월 3일
Hi, I wanted to ask whether there is an easier method to calculate the sum of relations for each component by considering the neghborhood of each point of a matrix. For example, by considering a 3*3 matrix:
a=[a11,a12,a13; a21,a22,a23; a31,a32,a33]
I want to calculate the sum of relations, in which the relation is:
r=(a-b)/(a+b)
So for example, for component a11, I would have:
r11=(a11-a12)/(a11+a12) + (a11-a22)/(a11+a22) + (a11-a21)/(a11+a21)
Essentially I want to calculate the sum of relations around each point. For example, for a11, there are 3 other points, so I have 3 relations summed up; for another point, for example, point a22, I have 8 other points in the neighborhood of a22, so I would have 8 relations that would be summed up. I've written a function for it but it's very long. A small portion of it:
function [c] = relation(y, i, j, m, n)
c=0;
if i~=1 && j~=1 && i~=m && j~=n
c = (y(i,j) - y(i,j+1))/ (y(i,j) + y(i,j+1));
c = c + (y(i,j) - y(i+1,j+1)) / (y(i,j) + y(i+1,j+1));
c = c + (y(i,j) - y(i+1,j))/ (y(i,j) + y(i+1,j));
c = c + (y(i,j) - y(i+1,j-1))/ (y(i,j) + y(i+1,j-1));
c = c + (y(i,j) - y(i-1,j-1))/ (y(i,j) + y(i-1,j-1));
c = c + (y(i,j) - y(i-1,j))/ (y(i,j) + y(i-1,j));
c = c + (y(i,j) - y(i-1,j+1))/ (y(i,j) + y(i-1,j+1));
c = c + (y(i,j) - y(i,j-1))/ (y(i,j) + y(i,j-1));
end
if i==1 && j==1
c = (y(i,j) - y(i,j+1))/ (y(i,j) + y(i,j+1));
c = c + (y(i,j) - y(i+1,j+1)) / (y(i,j) + y(i+1,j+1));
c = c + (y(i,j) - y(i+1,j))/ (y(i,j) + y(i+1,j));
end
.
.
.
I wanted to ask whether there would be an easier way to calculate the sum of relations.
Thank you.
  댓글 수: 2
Rik
Rik 2021년 7월 1일
Did you try my answer? Does it do what you need?
MarshallSc
MarshallSc 2021년 7월 1일
Thanks a lot Rik, yes, it works very well. As you mentioned, I was thinking about the convolution method as well but didn't know how to apply it. But your method works great, thank you for your taking the time. Hopefully others will suggest their opinions to see if it can be solved using convolution. Thanks again.

댓글을 달려면 로그인하십시오.

채택된 답변

Rik
Rik 2021년 7월 1일
It is almost possible to use a convolution to solve your question, but I couldn't see how, so I did it with a replicated array.
% example inputs
A = reshape(1:16,4,4);
n = numel(A)-1;
%first we pad the array with NaNs
A_pad=NaN(size(A)+2);
A_pad(2:(end-1),2:(end-1))=A;
%now we can replicate this for the 8 different shifts we need to apply
n=0;
B=repmat(A,[1 1 8]);
for k1=[-1 0 1]
tmp1=circshift(A_pad,k1,1);
for k2=[-1 0 1]
if k1==0 && k2==0,continue,end % skip the null shift
tmp2=circshift(tmp1,k2,2);
n=n+1;
B(:,:,n)=tmp2(2:(end-1),2:(end-1));
end
end
%calculate relations
%NB: pre-R2016b you need to use A=repmat(A,[1 1 8]); first
R=(A-B)./(A+B);
%sum over the third dimension, using only the valid shifts
R=sum(R,3,'omitnan')
R = 4×4
-1.7143 0.3853 0.0339 0.2752 -1.3508 0.8175 0.2677 0.5066 -1.1307 0.5767 0.2193 0.4672 -0.4632 0.4967 0.2527 0.3603
  댓글 수: 2
MarshallSc
MarshallSc 2021년 8월 3일
편집: MarshallSc 2021년 8월 3일
@Rik Would it be possible to transform this script into a function so that I can use it for multiple matrices?
Rik
Rik 2021년 8월 3일
As with all scripts in Matlab: yes. Can you guess how? Your first guess is probably correct.

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Programming에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by