U-Net architecture fail to segment the test images.

조회 수: 2 (최근 30일)
Raza Ali
Raza Ali 2021년 6월 25일
댓글: Raza Ali 2021년 7월 1일
I am trainng U-Net architecture for semantic segmentation but after training the trained network does not segment the test images.
I am using 500 images (400 training, 50 validation and 50 testing) along with labelled mask to train the network. The training process reaches at 90% validation accuracy after 2nd epoch and remains at same level for rest of the epochs. I tried many possible ways including change in learning rate but it does not work. The images are in JPEG format and labeld mask has png format.
load gTruth % load gTruth file of training data
[imdsTrain,pxdsTrain] = pixelLabelTrainingData(gTruth);
pximdsTrain = pixelLabelImageDatastore(imdsTrain,pxdsTrain);
load gTruth % load gTruth file of Validiation data
[imdsVal,pxdsVal] = pixelLabelTrainingData(gTruth);
pximdsVal = pixelLabelImageDatastore(imdsVal,pxdsVal);
load gTruth % load gTruth file of test data
[imdsTest,pxdsTest] = pixelLabelTrainingData(gTruth)
options = trainingOptions('sgdm', ...
'LearnRateSchedule','piecewise',...
'LearnRateDropPeriod',2,...
'LearnRateDropFactor',0.1,...
'Momentum',0.9, ...
'InitialLearnRate',1e-3, ...
'L2Regularization',0.09, ...
'ValidationData',pximdsVal,...
'MaxEpochs',5, ...
'MiniBatchSize',2, ...
'Shuffle','every-epoch', ...
'VerboseFrequency',50,...
'Plots','training-progress',...
'ValidationFrequency',100);
imageSize = [256 256 1];
numClasses = 2;
Network = unetLayers(imageSize,numClasses)
I repalced cross entropy loss with dice los function.
rng(1) %
Trained_net= trainNetwork(pximdsTrain,Network,options);

채택된 답변

ytzhak goussha
ytzhak goussha 2021년 6월 30일
This looks like a case of data imballance.
Check you data, see if there is a dominant class such as back ground you can also look at the predictions and see if they are all the same label.
If there is imballance, you need to use weight in your loss functions compensate for that, and there are other ways
See:
  댓글 수: 3
ytzhak goussha
ytzhak goussha 2021년 7월 1일
I'm sorry I didn't understand. Why not use weighted loss? the weight don't have to be exact, so you don't have to recalculate them with every sample.
Raza Ali
Raza Ali 2021년 7월 1일
I have used Balanced cross entropy loss and to comapre the performacne of other loss fucntion I need to implemnt Dice and cross entropy loss as well.

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Image Data Workflows에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by