Optimisation problem in matlab

조회 수: 2 (최근 30일)
wallflower
wallflower 2021년 6월 21일
댓글: Sergey Kasyanov 2022년 7월 13일
Hello guys,
So I have this scatte plot in the form of a measured impedance according to frequency Z(f), and I have an RL ladder circuit seen in the following figure
.
I need some help in writing an optimisation problem that will allow me to get the values of the parameters R_i L_i that will eventually give an equivalent impedance of the RL ladder similar to the one measured- Z(f) -.
Thanks in advance.
Wallflower
  댓글 수: 2
Rik
Rik 2021년 6월 21일
This looks like a homework assignment. You can find guidelines for posting homework on this forum here. If you have trouble with Matlab basics you may consider doing the Onramp tutorial (which is provided for free by Mathworks). If your main issue is with understanding the underlying concept, you may consider re-reading the material you teacher provided and ask them for further clarification.
wallflower
wallflower 2021년 6월 21일
It is not a homework assignment. I am trying to reproduce a methology I've seen in a scientific paper.

댓글을 달려면 로그인하십시오.

답변 (1개)

Sergey Kasyanov
Sergey Kasyanov 2021년 6월 21일
편집: Torsten 2022년 7월 12일
Hello!
Try that:
% tune only next 2 lines
L = 5;% steps in ladder
Z_max = 1e2;% max Z for one R or Xl
% goal Z(w)
% w0 - array with measured angular frequences
% Z0 - array with measured impedances
% R0 - Rs_1.txt
% L0 - 2*Self_Energy_1.txt
w0 = (2.*pi.*[[1e-3,50,500],1e3:2e3:500e3])';
% Start inserted to make code work
R0 = rand(size(w0));
L0 = rand(size(w0));
% End inserted to make code work
Z0 = R0(:,1) + 1i*w0.*L0(:,1);
w0 = reshape(w0, 1, []);
Z0 = reshape(Z0, 1, []);
%% calculate z(w) for ladder
R = sym('R', [1,L+1]);
L = sym('L', [1,length(R)]);
w = sym('w');
par = @(a, b) 1/(1/a + 1/b);
h1 = @(a, i) R(i) + par(a, 1i*w*L(i));
Z = R(end);
for i = (length(R)-1):-1:1
Z = h1(Z, i);
end
% get lambda function for optimization
fun1 = matlabFunction(Z);
% do not look at that code
s = 'fun2 = @(vals, w) fun1(';
for i = 1:(length(R)*2 - 1)
s = [s, sprintf('vals(%i), ', i)];
end
s = [s, 'w);'];
eval(s);
% create optimization function
fun3 = @(vals) sum(abs(fun2(vals, w0) - Z0).^2);
% number of variables
N = length(symvar(Z)) - 1;
%the better way is to use more powerfull algorithms such as genetic algoritms which can stands
%against a huge amount of local min. There are a lot of algorithms that
%realized in matlab toolboxes. Try!
options = optimoptions('ga', 'Display', 'iter', 'PopulationSize', N*200, 'MaxGenerations', N*200);
res = ga(fun3, N, [], [], [], [], zeros(1, N), Z_max*[ones(1,floor(N/2))/2/pi, ones(1, ceil(N/2))], [], options);
Single objective optimization: 11 Variable(s) Options: CreationFcn: @gacreationuniform CrossoverFcn: @crossoverscattered SelectionFcn: @selectionstochunif MutationFcn: @mutationadaptfeasible Best Mean Stall Generation Func-count f(x) f(x) Generations 1 4400 2.953e+14 2.953e+14 0 2 6490 2.953e+14 2.953e+14 0 3 8580 2.953e+14 2.953e+14 0 4 10670 2.953e+14 2.953e+14 0 5 12760 2.953e+14 2.953e+14 0 6 14850 2.953e+14 2.953e+14 0 7 16940 2.953e+14 2.953e+14 0 8 19030 2.953e+14 2.953e+14 0 9 21120 2.953e+14 2.953e+14 0 10 23210 2.953e+14 2.953e+14 0 11 25300 2.953e+14 2.953e+14 0 12 27390 2.953e+14 2.953e+14 0 13 29480 2.953e+14 2.953e+14 0 14 31570 2.953e+14 2.953e+14 0 15 33660 2.953e+14 2.953e+14 0 16 35750 2.953e+14 2.953e+14 0 17 37840 2.953e+14 2.953e+14 0 18 39930 2.953e+14 2.953e+14 0 19 42020 2.953e+14 2.953e+14 0 20 44110 2.953e+14 2.953e+14 0 21 46200 2.953e+14 2.953e+14 0 22 48290 2.953e+14 2.953e+14 0 23 50380 2.953e+14 2.953e+14 0 24 52470 2.953e+14 2.953e+14 1 25 54560 2.953e+14 2.953e+14 0 26 56650 2.953e+14 2.953e+14 0 27 58740 2.953e+14 2.953e+14 0 28 60830 2.953e+14 2.953e+14 0 29 62920 2.953e+14 2.953e+14 0 30 65010 2.953e+14 2.953e+14 1 Best Mean Stall Generation Func-count f(x) f(x) Generations 31 67100 2.953e+14 2.953e+14 0 32 69190 2.953e+14 2.953e+14 1 33 71280 2.953e+14 2.953e+14 2 34 73370 2.953e+14 2.953e+14 0 35 75460 2.953e+14 2.953e+14 0 36 77550 2.953e+14 2.953e+14 0 37 79640 2.953e+14 2.953e+14 0 38 81730 2.953e+14 2.953e+14 0 39 83820 2.953e+14 2.953e+14 1 40 85910 2.953e+14 2.953e+14 2 41 88000 2.953e+14 2.953e+14 3 42 90090 2.953e+14 2.953e+14 0 43 92180 2.953e+14 2.953e+14 0 44 94270 2.953e+14 2.953e+14 0 45 96360 2.953e+14 2.953e+14 0 46 98450 2.953e+14 2.953e+14 1 47 100540 2.953e+14 2.953e+14 2 48 102630 2.953e+14 2.953e+14 3 49 104720 2.953e+14 2.953e+14 4 50 106810 2.953e+14 2.953e+14 0 51 108900 2.953e+14 2.953e+14 0 52 110990 2.953e+14 2.953e+14 0 53 113080 2.953e+14 2.953e+14 1 54 115170 2.953e+14 2.953e+14 0 55 117260 2.953e+14 2.953e+14 1 Optimization terminated: average change in the fitness value less than options.FunctionTolerance.
% first floor(N/2) of res - L(1), L(2), ...
% last ceil(N/2) of res - R(1), R(2), ...
%plot results
figure;plot(w0, abs(Z0), w0, abs(fun2(res,w0)));
figure;plot(w0, angle(Z0), w0, angle(fun2(res,w0)));
  댓글 수: 14
Anes MESSADI
Anes MESSADI 2022년 7월 12일
there are no errors, it works, but the fitting is not good, I used only the Rs_1.txt and Self_Energy_1.txt just to test the code.
Thank you for your help
Sergey Kasyanov
Sergey Kasyanov 2022년 7월 13일
Try to use that code with your w0 and Z0. Also you need function ladder_z in the file.
% tune only next 2 lines
L = 10;% steps in ladder
Z_max = 1e2;% max Z for one R or Xl
% w0 - array with measured angular frequences
% Z0 - array with measured impedances
% create data for testing
w0 = 2 * pi * logspace(-3, 2, 10);
z0 = [rand(1, L);rand(1, L)];
Z0 = [];
for i = 1:length(w0)
Z0(i) = ladder_z(z0(1, :) + z0(2, :) * 1i * w0(i));
end
% main code
h1 = @(vals, w) ladder_z(vals(1:fix(length(vals) / 2)) + 1i * w * vals(fix(length(vals) / 2) + 1:end));
h2 = @(vals) arrayfun(@(iw) h1(vals, iw), w0);
f = @(vals) sum(abs(h2(vals) - Z0).^2);
options = optimoptions('ga', 'Display', 'iter', 'PopulationSize', L*200, 'MaxGenerations', L*200, 'UseParallel', true);
res = ga(f, L * 2, [], [], [], [], zeros(1, 2 * L), Z_max*[ones(1, L), ones(1, L) / 2 / pi], [], options);
% check
figure;plot(w0, abs(Z0), w0, abs(h2(res)));

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Surrogate Optimization에 대해 자세히 알아보기

제품


릴리스

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by