update reinforcement policy.m weights

조회 수: 1 (최근 30일)
Victor Bayer
Victor Bayer 2021년 6월 15일
Hello,
in order to run an RLAgent on a Raspberry i have generated a Policy.m file out of the saved Agent (see: https://www.mathworks.com/matlabcentral/answers/854085-run-reinforcement-learning-agent-on-raspberry?s_tid=srchtitle
&
This file is attached to the question (evaluatePolicy.m).
In the Simulink-model running on the raspberry (Raspberry_USB_.slx) this file is called as replacement to the RLAgent Block, since that one can not be executed on the Raspberry hardware. Through this, an action can be calculated on the raspberry. However, since the Policy.m file does not consider any reward and does not update itself, no learning takes place on the raspberry (see....).
My question is, if there is any way to update the policy function if one considers a reward for the executed action?
The goal is to enable learning on a raspberry.
I am gratefull for any tip.
Thanks and best regards,
Victor Bayer

채택된 답변

Emmanouil Tzorakoleftherakis
Emmanouil Tzorakoleftherakis 2021년 6월 22일
Hello,
When you want to perform inference on an RL policy, there is no need to consider rewards. The trained policy already knows internally that the actions taken are the right ones.
If you are asking whether you can perform RL training on the raspberry pi, this is not currently supported.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Raspberry Pi Hardware에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by