How to Colour regions in a gscatter?

조회 수: 5 (최근 30일)
Bhavick Singh
Bhavick Singh 2021년 6월 15일
편집: Cris LaPierre 2021년 6월 16일
The attached graph shows 3 different groups. I want to shade the groups as well. all of them are separated from each other so it my be linear shading. Please assist.
  댓글 수: 6
Bhavick Singh
Bhavick Singh 2021년 6월 16일
Hi Scott, the example is from Matlab Onramp.
Bhavick Singh
Bhavick Singh 2021년 6월 16일
@Shelly Choudhary yes they have been grouped based on where they lie on the y axis.

댓글을 달려면 로그인하십시오.

답변 (1개)

Cris LaPierre
Cris LaPierre 2021년 6월 16일
편집: Cris LaPierre 2021년 6월 16일
This is actually from the Machine Learning Onramp, not MATLAB Onramp. See Chapter 2.5. The one you show is specifically in the background popup of Task 2.
Those plots are created following the steps outlined on the Visualize Decision Surfaces of Different Classifiers.
Here's an example based on that doc page:
load fisheriris
X = meas(:,1:2);
y = categorical(species);
labels = categories(y);
% Visualize the data using a scatter plot. Group the variables by iris species.
gscatter(X(:,1),X(:,2),species,'rgb','osd');
xlabel('Sepal length');
ylabel('Sepal width');
% Train a naive Bayes model.
classifier = fitcnb(X,y);
% Create a grid of points spanning the entire space within some bounds of the actual data values.
x1range = min(X(:,1)):.01:max(X(:,1));
x2range = min(X(:,2)):.01:max(X(:,2));
[xx1, xx2] = meshgrid(x1range,x2range);
XGrid = [xx1(:) xx2(:)];
% Predict the iris species of each observation in XGrid using all classifiers. Plot the a scatter plot of the results.
predictedspecies = predict(classifier,XGrid);
% Visualize the decision surface
gscatter(xx1(:), xx2(:), predictedspecies,[255 191 191; 191 255 191; 191 191 255]./255);
hold on
gscatter(X(:,1),X(:,2),species,'rgb','.');
hold off
title('Naive Bayes')
legend off, axis tight
legend(labels,'Location',[0.35,0.01,0.35,0.05],'Orientation','Horizontal')

카테고리

Help CenterFile Exchange에서 Classification Trees에 대해 자세히 알아보기

제품


릴리스

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by