the "taylor" function does not work for me (beginner)

조회 수: 2 (최근 30일)
Szczepan Michura
Szczepan Michura 2021년 5월 25일
댓글: the cyclist 2021년 5월 26일
typing expressions under "taylor()" i get the message that "Unrecognized function or variable 'Taylor'"
should I download this program function from somewhere?
syms x
T1 = taylor (exp (x));
T2 = taylor (sin (x));
T3 = Taylor (cos (x));

답변 (1개)

the cyclist
the cyclist 2021년 5월 26일
In the assignment statement for T3, you capitalized "Taylor". MATLAB is case-sensitive, so you must use "taylor".
  댓글 수: 4
Szczepan Michura
Szczepan Michura 2021년 5월 26일
is this normal?
the cyclist
the cyclist 2021년 5월 26일
Yes, it is normal to get "not found" if you misspell the name of the command.
Maybe you meant ...
help taylor
--- help for sym/taylor --- TAYLOR(f) is the fifth order Taylor polynomial approximation of f about the point x=0 (also known as fifth order Maclaurin polynomial), where x is obtained via symvar(f,1). TAYLOR(f,x) is the fifth order Taylor polynomial approximation of f with respect to x about x=0. x can be a vector. In case x is a vector, multivariate expansion about x(1)=0, x(2)=0,... is used. TAYLOR(f,x,a) is the fifth order Taylor polynomial approximation of f with respect to x about the point a. x and a can be vectors. If x is a vector and a is scalar, then a is expanded into a vector of the same size as x with all components equal to a. If x and a both are vectors, then they must have same length. In case x and a are vectors, multivariate expansion about x(1)=a(1),x(2)=a(2),... is used. In addition to that, the calls TAYLOR(f,'PARAM1',val1,'PARAM2',val2,...) TAYLOR(f,x,'PARAM1',val1,'PARAM2',val2,...) TAYLOR(f,x,a,'PARAM1',val1,'PARAM2',val2,...) can be used to specify one or more of the following parameter name/value pairs: Parameter Value 'ExpansionPoint' Compute the Taylor polynomial approximation about the point a. a can be a vector. If x is a vector, then a has to be of the same length as x. If a is scalar and x is a vector, a is expanded into a vector of the same length as x with all components equal to a. Note that if x is not given as in taylor(f,'ExpansionPoint',a), then a must be scalar (since x is determined via symvar(f,1)). It is always possible to specify the expansion point as third argument without explicitly using a parameter value pair. 'Order' Compute the Taylor polynomial approximation with order n-1, where n has to be a positive integer. The default value n=6 is used. 'OrderMode' Compute the Taylor polynomial approximation using relative or absolute order. 'Absolute' order is the truncation order of the computed series. 'Relative' order n means the exponents of x in the computed series range from some leading order v to the highest exponent v + n - 1 (i.e., the exponent of x in the Big-Oh term is v + n). In this case, n essentially is the "number of x powers" in the computed series if the series involves all integer powers of x Examples: syms x y z; taylor(exp(-x)) returns x^4/24 - x^5/120 - x^3/6 + x^2/2 - x + 1 taylor(sin(x),x,pi/2,'Order',6) returns (pi/2 - x)^4/24 - (pi/2 - x)^2/2 + 1 taylor(sin(x)*cos(y)*exp(x),[x y z],[0 0 0],'Order',4) returns x - (x*y^2)/2 + x^2 + x^3/3 taylor(exp(-x),x,'OrderMode','Relative','Order',8) returns - x^7/5040 + x^6/720 - x^5/120 + x^4/24 - x^3/6 + ... x^2/2 - x + 1 taylor(log(x),x,'ExpansionPoint',1,'Order',4) returns x - 1 - 1/2*(x - 1)^2 + 1/3*(x - 1)^3 taylor([exp(x),cos(y)],[x,y],'ExpansionPoint',[1 1],'Order',4) returns exp(1) + exp(1)*(x - 1) + (exp(1)*(x - 1)^2)/2 + ... (exp(1)*(x - 1)^3)/6'), cos(1) + (sin(1)*(y - 1)^3)/6 - ... sin(1)*(y - 1) - (cos(1)*(y - 1)^2)/2 taylor(exp(z)/(x - y),[x,y,z],'ExpansionPoint',[Inf,0,0], ... 'OrderMode','Absolute','Order',6) returns y^2/x^3 + z^2/(2*x) + z^3/(6*x) + z^4/(24*x) + y/x^2 + ... z/x + 1/x + (y*z)/x^2 + (y*z^2)/(2*x^2) See also SYM/SYMVAR, SYM/SYMSUM, SYM/DIFF, SUBS. Documentation for sym/taylor doc sym/taylor

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Calculus에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by