Non linear fit of multiple data set

조회 수: 1 (최근 30일)
Daniele Sonaglioni
Daniele Sonaglioni 2021년 5월 15일
답변: Matt J 2021년 5월 15일
Hi everyone,
I am trying to extract the confidence interval of my fitted parameters. I have used a GlobalSearch routine with fmincon as solver. Do you have any suggestion?
Below i attach the code:
clear
%fit per tln+glu under Tg
R=8.314;
T1=220; %temperature reffered to y1
T2=300; %temperature reffered to y2
yfcn1 = @(b,x) b(1).*exp(-x(:,2).^2.*b(2)).*(1-2*(exp(b(3)./(R.*x(:,1))-b(4)/R)./(1+exp(b(3)./(R.*x(:,1))-b(4)/R)).^2).*(1-sin(x(:,2).*b(5))./(x(:,2)*b(5))));
yfcn2 = @(b,x) b(6).*exp(-x(:,2).^2.*b(7)).*(1-2*(exp(b(3)./(R.*x(:,1))-b(4)/R)./(1+exp(b(3)./(R.*x(:,1))-b(4)/R)).^2).*(1-sin(x(:,2).*b(5))./(x(:,2)*b(5))));
x=[0.5215 0.7756 1.2679 1.4701 1.6702 1.8680 2.0633 2.2693 2.4584 2.6442 2.8264 3.0046 3.0890 3.2611 3.4287 3.5917 3.7497 3.9309 4.0774 4.2183 4.3535 4.4827 4.5427 4.6628];
y1=[0.9936 0.9375 0.9081 0.8648 0.8568 0.8114 0.7711 0.8010 0.7884 0.7389 0.7901 0.7825 0.7903 0.7501 0.7070 0.7489 0.6441 0.7105 0.6735 0.6385 0.6357 0.6962 0.5946 0.6783];
y1_err= [ 0.0637 0.0526 0.0330 0.0235 0.0298 0.0223 0.0388 0.0223 0.0333 0.0326 0.0410 0.0282 0.0561 0.0235 0.0271 0.0218 0.0333 0.0252 0.0344 0.0261 0.0499 0.0396 0.0655 0.0901];
y2=[0.8748 0.8726 0.7922 0.7782 0.7396 0.6958 0.6603 0.6503 0.6556 0.6461 0.6021 0.5820 0.6220 0.5768 0.4950 0.5300 0.5234 0.5170 0.4369 0.4508 0.4409 0.4392 0.4100 0.6699];
y2_err=[ 0.0562 0.0480 0.0287 0.0211 0.0260 0.0194 0.0339 0.0188 0.0287 0.0289 0.0332 0.0225 0.0460 0.0191 0.0211 0.0169 0.0280 0.0198 0.0256 0.0204 0.0392 0.0283 0.0504 0.0856];
format long E
T1=220; %temperature reffered to y1
T2=300; %temperature reffered to y2
T1v = T1*ones(size(x));
T2v = T2*ones(size(x));
%T3v = T3*ones(size(x));
xm = x(:)*ones(1,2);
ym = [y1(:) y2(:)];%, y3(:)];
Tm = [T1v(:) T2v(:)];% T3v(:) ];
yerr=[y1_err(:) y2_err(:)];% y3_err(:)];
xv = xm(:);
yv = ym(:);
Tv = Tm(:);
yerrv=yerr(:);
weights=1./yerrv;
xTm = [Tv xv];
%B0 = randn(7,1)*0.1;
B0=[0.5 1e-3 0.5 1e-3 12e4 45 1.5]';
yfcn = @(b,x) yfcn1(b,x).*(x(:,1)==T1) + yfcn2(b,x).*(x(:,1)==T2);
fitfcnw = @(b) norm(weights.*(yv - yfcn(b,xTm)));
lb=[0,0,10e3,0,0,0,0];
ub=[1,1,4e5,1000,2,1,1];
A = @simple_constraint;
problem = createOptimProblem('fmincon', 'x0',B0,'nonlcon',A, 'objective',fitfcnw,'lb',lb,'ub',ub);%
gs = GlobalSearch('PlotFcns',@gsplotbestf);%,'Aineq',ConstraintFunction
[B,fval] = run(gs,problem)
B(:)
% ci = nlparci(B,resid,'jacobian',J1);
format short eng
mdl = fitnlm(xTm,yv,yfcn,B,'Weights',weights)
figure(1)
for k = 1:2
idx = (1:numel(x))+numel(x)*(k-1);
subplot(2,1,k)
errorbar(x.^2, ym(:,k),yerr(:,k), '.')
hold on
plot(x.^2, yfcn(B,xTm(idx,:)), '-r')
hold off
grid
ylabel('Substance [Units]')
title(sprintf('y_{%d}, T = %d', k,xTm(idx(1),1)))
ylim([min(yv) max(yv)+0.2])
if k == 1
text(5, max(yv)+0.1, sprintf('$y = %.3f\\times e^{-x^2\\times %.3f}(1-2\\frac{e^{\\frac{%.3f}{%3d\\times R}-\\frac{%.3f}{R}}}{(1+e^{\\frac{%.3f}{%3d\\times R}-\\frac{%.3f}{R}})^2}(1-\\frac{sin(%.3fx}{%.3fx}))$',B(1:3),T1,B(4),B(3),T1,B(4:5),B(5)), 'Interpreter','latex', 'FontSize',12)
elseif k == 2
text(5, max(yv)+0.1, sprintf('$y = %.3f\\times e^{-x^2\\times %.3f}(1-2\\frac{e^{\\frac{%.3f}{%3d\\times R}-\\frac{%.3f}{R}}}{(1+e^{\\frac{%.3f}{%3d\\times R}-\\frac{%.3f}{R}})^2}(1-\\frac{sin(%.3fx}{%.3fx}))$',B(6:7),B(3),T2,B(4),B(3),T2,B(4:5),B(5)), 'Interpreter','latex', 'FontSize',12)
end
end
xlabel('Q^2')
title('GlobalSearch')
% Tm=[B];
% dlmwrite('C:\Users\Utente\Desktop\neutron_fit\doppia_buca_analisi\genetic_algorithm\prova_params_gs2.txt',Tm,'precision','%.6f');
pos = get(gcf, 'Position');
set(gcf, 'Position',pos+[-150 -150 +150 +150])
[ynew,ynewci] = predict(mdl,xTm);
figure(2)
for k = 1:2
idx = (1:numel(x))+numel(x)*(k-1);
subplot(2,1,k)
errorbar(x.^2, ym(:,k),yerr(:,k), '.')
hold on
plot(x.^2, ynew(idx), '-r')
plot(x.^2, ynewci(idx,:), '--r')
hold off
grid
ylabel('Substance [Units]')
title(sprintf('y_{%d}, T = %d', k,xTm(idx(1),1)))
ylim([min(yv) max(yv)])
end
xlabel('Q^2')
title('GlobalSearch bis')
and the subroutine used:
function [c, ceq] = simple_constraint(b)
c=[b(4)/8.314-15;
b(4)-50e4;
1-b(5)];
ceq=[];
%1e4-b(3)/8.314;

답변 (1개)

Matt J
Matt J 2021년 5월 15일
Because of the constraints, I think you'll just have to do it by Monte Carlo simulation...

카테고리

Help CenterFile Exchange에서 Material Sciences에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by