Speech recognition Coding
조회 수: 91 (최근 30일)
이전 댓글 표시
somebody please tell me how do i go about speech recognition coding.
댓글 수: 4
답변 (8개)
Raviteja
2011년 2월 4일
First you need fundamentals of speech processing. Witch includes speech signal basic sounds and features. DSP techniques like, FFT, Windowing,STFT.
Some basic signal processing tasks like finding energy, spectrum of speech, autocorrelation, zero crossing detection, silence speech removal techniques etc. Then feature extraction from speech signals.
Feature extraction (LPC,MFCC). Then classification process of feature vectros by VQ.
Then statistical modelling like HMM, GMM.
You need to go following books "Digital processing of speech signals" by Rabinar "Fundamentals of speech recognition" by Rabinar And good books for DSP.
Mostly you read IEEE papers.
댓글 수: 0
Michelle Hirsch
2011년 2월 4일
Is your goal to have speech recognition running in MATLAB, or to actually learn how to implement the algorithm?
If you just want to be able to use speech recognition in MATLAB, and you are running on Windows, you can pretty easily just incorporate the existing Windows capabilities using the MATLAB interface to .NET.
Here's some code my friend Jiro happened to pass around just the other day for this exact task. (Paste into a file in the editor and save).
function rec = speechrecognition
% Add assembly
NET.addAssembly('System.Speech');
% Construct engine
rec = System.Speech.Recognition.SpeechRecognitionEngine;
rec.SetInputToDefaultAudioDevice;
rec.LoadGrammar(System.Speech.Recognition.DictationGrammar);
% Define listener callback
addlistener(rec, 'SpeechRecognized', @recognizedFcn);
% Start recognition
rec.RecognizeAsync(System.Speech.Recognition.RecognizeMode.Multiple);
% Callback
function recognizedFcn(obj, e)
% Get text
txt = char(e.Result.Text);
% Split into words
w = regexp(txt, '\s', 'split');
if length(w) > 1
% Look for the occurrence of the phrase "search for"
idx = find(strcmp(w(1:end-1), 'search') & ...
strcmp(w(2:end), 'for'), 1, 'first');
if ~isempty(idx) && length(w) >= idx+2
% The words after are the search terms
searchTerm = sprintf('%s+', w{idx+2:end});
searchTerm(end) = '';
% Search on the web
web(['http://www.google.com/search?q=', searchTerm]);
fprintf(2, 'search for "%s"\n', strrep(searchTerm, '+', ' '));
else
%disp(txt)
end
elseif length(w) == 1 && strcmpi(w{1}, 'stop')
obj.RecognizeAsyncStop;
obj.delete;
%disp(txt);
disp('Stopping Speech Recognition. Thank you for using!');
else
%disp(txt);
end
댓글 수: 3
Frandy
2012년 4월 15일
Hello I'm working on a project that involves using speech recognition. Now I tried to use your code but I am not sure on the actual process in which to have the code actually work. Do you mind explain?
Steven Dakin
2021년 1월 10일
Some operational example code that uses this approach would be vey useful!
Nada Gamal
2011년 4월 20일
Hi Raviteja , I made all steps of speech recognition except of classification because i used Elcudien Distance and calculate the minium distance to the templates .And i have a problem now in how can i implement Hidden Markove model in speech recognition . i don't understand this algrothim . Thanks a lot :) Best Regards, Nada Gamal
veni
2016년 8월 24일
how to write the speech recognisation in matlab coding? how to record the speech in matlab?
댓글 수: 1
Walter Roberson
2016년 8월 25일
See audiorecorder() to record the speech. http://www.mathworks.com/help/matlab/ref/audiorecorder.html
Neha Tonpe
2022년 11월 25일
편집: Walter Roberson
2022년 11월 25일
function rec = speechrecognition
% Add assembly
NET.addAssembly('System.Speech');
% Construct engine
rec = System.Speech.Recognition.SpeechRecognitionEngine;
rec.SetInputToDefaultAudioDevice;
rec.LoadGrammar(System.Speech.Recognition.DictationGrammar);
% Define listener callback
addlistener(rec, 'SpeechRecognized', @recognizedFcn);
% Start recognition
rec.RecognizeAsync(System.Speech.Recognition.RecognizeMode.Multiple);
% Callback
function recognizedFcn(obj, e)
% Get text
txt = char(e.Result.Text);
% Split into words
w = regexp(txt, '\s', 'split');
if length(w) > 1
% Look for the occurrence of the phrase "search for"
idx = find(strcmp(w(1:end-1), 'search') & ...
strcmp(w(2:end), 'for'), 1, 'first');
if ~isempty(idx) && length(w) >= idx+2
% The words after are the search terms
searchTerm = sprintf('%s+', w{idx+2:end});
searchTerm(end) = '';
% Search on the web
web(['http://www.google.com/search?q=', searchTerm]);
fprintf(2, 'search for "%s"\n', strrep(searchTerm, '+', ' '));
else
%disp(txt)
end
elseif length(w) == 1 && strcmpi(w{1}, 'stop')
obj.RecognizeAsyncStop;
obj.delete;
%disp(txt);
disp('Stopping Speech Recognition. Thank you for using!');
else
%disp(txt);
end
댓글 수: 0
Lavuri
2022년 12월 26일
function rec = speechrecognition
% Add assembly
NET.addAssembly('System.Speech');
% Construct engine
rec = System.Speech.Recognition.SpeechRecognitionEngine;
rec.SetInputToDefaultAudioDevice;
rec.LoadGrammar(System.Speech.Recognition.DictationGrammar);
% Define listener callback
addlistener(rec, 'SpeechRecognized', @recognizedFcn);
% Start recognition
rec.RecognizeAsync(System.Speech.Recognition.RecognizeMode.Multiple);
% Callback
function recognizedFcn(obj, e)
% Get text
txt = char(e.Result.Text);
% Split into words
w = regexp(txt, '\s', 'split');
if length(w) > 1
% Look for the occurrence of the phrase "search for"
idx = find(strcmp(w(1:end-1), 'search') & ...
strcmp(w(2:end), 'for'), 1, 'first');
if ~isempty(idx) && length(w) >= idx+2
% The words after are the search terms
searchTerm = sprintf('%s+', w{idx+2:end});
searchTerm(end) = '';
% Search on the web
web(['http://www.google.com/search?q=', searchTerm]);
fprintf(2, 'search for "%s"\n', strrep(searchTerm, '+', ' '));
else
%disp(txt)
end
elseif length(w) == 1 && strcmpi(w{1}, 'stop')
obj.RecognizeAsyncStop;
obj.delete;
%disp(txt);
disp('Stopping Speech Recognition. Thank you for using!');
else
%disp(txt);
end
댓글 수: 0
pathakunta
2024년 1월 26일
First you need fundamentals of speech processing. Witch includes speech signal basic sounds and features. DSP techniques like, FFT, Windowing,STFT. Some basic signal processing tasks like finding energy, spectrum of speech, autocorrelation, zero crossing detection, silence speech removal techniques etc. Then feature extraction from speech signals. Feature extraction (LPC,MFCC). Then classification process of feature vectros by VQ. Then statistical modelling like HMM, GMM. You need to go following books "Digital processing of speech signals" by Rabinar "Fundamentals of speech recognition" by Rabinar And good books for DSP. Mostly you read IEEE papers.
댓글 수: 0
Praveen
2024년 10월 8일
function rec = speechrecognition
% Add assembly
NET.addAssembly('System.Speech');
% Construct engine
rec = System.Speech.Recognition.SpeechRecognitionEngine;
rec.SetInputToDefaultAudioDevice;
rec.LoadGrammar(System.Speech.Recognition.DictationGrammar);
% Define listener callback
addlistener(rec, 'SpeechRecognized', @recognizedFcn);
% Start recognition
rec.RecognizeAsync(System.Speech.Recognition.RecognizeMode.Multiple);
% Callback
function recognizedFcn(obj, e)
% Get text
txt = char(e.Result.Text);
% Split into words
w = regexp(txt, '\s', 'split');
if length(w) > 1
% Look for the occurrence of the phrase "search for"
idx = find(strcmp(w(1:end-1), 'search') & ...
strcmp(w(2:end), 'for'), 1, 'first');
if ~isempty(idx) && length(w) >= idx+2
% The words after are the search terms
searchTerm = sprintf('%s+', w{idx+2:end});
searchTerm(end) = '';
% Search on the web
web(['http://www.google.com/search?q=', searchTerm]);
fprintf(2, 'search for "%s"\n', strrep(searchTerm, '+', ' '));
else
%disp(txt)
end
elseif length(w) == 1 && strcmpi(w{1}, 'stop')
obj.RecognizeAsyncStop;
obj.delete;
%disp(txt);
disp('Stopping Speech Recognition. Thank you for using!');
else
%disp(txt);
end
댓글 수: 0
참고 항목
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!