Combine lsqcurvefit with fsolve

조회 수: 1 (최근 30일)
Gregory Cottone
Gregory Cottone 2021년 4월 1일
댓글: Gregory Cottone 2021년 4월 4일
Hi,
my goal is to optimize the length L0, L1, L2 and L3 of the bars of the following mechanism so that the theta2 angle follows the trend of my input data:
This is the mechanism:
And this is the data that I want to fit:
theta1 = linspace(0,pi,n);
theta2 = [0.53,0.40,0.32,0.28,0.27,0.27,0.28,0.29,0.31,0.34,0.36,0.40,0.43,0.47,0.50,0.55,0.59,0.64,0.69,0.75]; %(data to fit)
which they have this trend:
My strategy was to mainly use the lsqcurvefit function and have the kinematic closure equation solved recursively using the fsolve function:
clc;
clear all;
n = 20;
theta1 = linspace(0,pi,n);
theta2 = [0.53,0.40,0.32,0.28,0.27,0.27,0.28,0.29,0.31,0.34,0.36,0.40,0.43,0.47,0.50,0.55,0.59,0.64,0.69,0.75]; %(data to fit)
L0 = [0,0,0,0]; % Initial lenght of the bars, in the order: L0,L1,L2 and L3
for i = 1:n
y0 = [0.5,1.1]; % Initial guess of theta2 and theta3
options = optimset('display', 'off');
y(i,:) = fsolve(@(y)fourbar(y,theta1(i)),y0,options);
end
%Objective: find the L0, L1, L2 and L3 optimized to make the function...
...interpolating the data (theta1,theta2)
L = lsqcurvefit(@fourbar,L0,theta1,theta2);
function Phi = fourbar(y,L,theta1)
u1 = [cos(theta1), sin(theta1)];
u2 = [cos(y(1)), sin(y(1))];
u3 = [cos(y(2)), sin(y(2))];
Phi = L(1)*u1 + L(2)*u2 - L(3)*u3 - [L(4), 0];
end
But unfortunately it doesn't work and I don't know how to solve the problem.
  댓글 수: 4
Matt J
Matt J 2021년 4월 3일
편집: Matt J 2021년 4월 3일
I'm still not sure there are enough constraints. For example L1=L2=0, L3=L0 is always a solution.
Also, do you not have theta3 data as well? That would reduce the problem to a set of linear equations.
Gregory Cottone
Gregory Cottone 2021년 4월 4일
Unfortunately I don't have any theta3 data to fit in my problem.

댓글을 달려면 로그인하십시오.

채택된 답변

Matt J
Matt J 2021년 4월 3일
편집: Matt J 2021년 4월 3일
I would just use lsqnonlin.
theta2 = [0.53,0.40,0.32,0.28,0.27,0.27,0.28,0.29,0.31,0.34,0.36,0.40,0.43,0.47,0.50,0.55,0.59,0.64,0.69,0.75]; %(data to fit)
theta1 = linspace(0,pi,numel(theta2));
L0=1;
opts=optimoptions(@lsqnonlin,'StepTolerance',1e-12,'OptimalityTolerance',1e-12,'FunctionTolerance',1e-12);
[L,resn,res]=lsqnonlin(@(L) resid(L,L0,theta1,theta2), [0.5,0.5,1]*L0, [0,0,0],[1,inf inf]*L0);
Local minimum found. Optimization completed because the size of the gradient is less than the value of the optimality tolerance.
L
L = 1×3
0.5047 1.4891 1.0920
function fval=resid(L,L0,theta1,theta2)
dX=L(1)*cos(theta1(:))+L(2)*cos(theta2(:));
dY=L(1)*sin(theta1(:))+L(2)*sin(theta2(:));
fval=(L0-dX).^2 + dY.^2-L(3).^2;
end
  댓글 수: 3
Matt J
Matt J 2021년 4월 4일
편집: Matt J 2021년 4월 4일
I did not start with fourbar (I don't understand it). I started with your diagram. Basically, the components of u3 are,
u3=[dX-L0,dY]
and the equations we want to solve are
norm(L3)^2=norm(u3)^2
Gregory Cottone
Gregory Cottone 2021년 4월 4일
Now I understand! Thank you Matt.

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Programming에 대해 자세히 알아보기

제품

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by