深層学習における画像処理について

조회 수: 2 (최근 30일)
勇輝 岡安 
勇輝 岡安  2021년 4월 1일
댓글: 勇輝 岡安  2021년 4월 3일
深層学習を用いて画像分類を行いたいのですが、画像データのサイズがばらばらであるため、augmentedImageDatastoreを使って学習データのサイズを変換しようとしました。しかし、エラーが出て、学習をすることができません。どうすればよいのでしょうか?
エラーは以下の通りです。
エラー: trainNetwork (行 183)
検証イメージのサイズは 375x500x3 ですが、入力層にはサイズ 28x28x3 のイメージが必要です。
コードは、層の設定を省略して載せています。
clear;
a=imageDatastore(fullfile("animal_data"),"IncludeSubfolders",true,"LabelSource","foldernames");
labelCount=countEachLabel(a)
[imdsTrain, imdsValidation] = splitEachLabel(a,0.7,0.3,"randomized");
allTrain=augmentedImageDatastore([28 28 3],imdsTrain);
layers = [
imageInputLayer([28 28 3])
・・・・
net = trainNetwork(allTrain,layers,options);

채택된 답변

Hiroyuki Hishida
Hiroyuki Hishida 2021년 4월 1일
岡安様、
"検証"イメージサイズがDNNの入力サイズにあっていないからかと思われます。
コードを拝見しますと、imdsTrainはaugmentaionされておりますが、imdsValidationはaugmentationされておりません。もし、imdsValidationを作成されたDNNに入力されますと、入力サイズエラーになるかと思われます。
菱田
  댓글 수: 1
勇輝 岡安 
勇輝 岡安  2021년 4월 3일
検証データもサイズ変更が必要なのを忘れていました。
サイズ変更をした結果、無事に学習を行えました。ありがとうございました。

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 イメージを使用した深層学習에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!