multiplyLayer - Perform a square operation ?

조회 수: 95 (최근 30일)
Jeffrey Zurita
Jeffrey Zurita 2021년 3월 31일
답변: Meet 2024년 9월 16일
I'm building a deep learning network and need to perform a element-by-element square operation (that is x^2). I planned to use the multiplyLayer but it won't accept the same input twice. Is there a squaredLayer in the works, or is there a workaround in the short term?
Thank you,
  • jz

답변 (1개)

Meet
Meet 2024년 9월 16일
Hi Jeffrey,
As of now, MATLAB's Deep Learning Toolbox does not have a built-in “squaredLayer”. However, you can create a custom layer to perform element-wise squaring. Follow the steps below to define a custom layer that squares its input and integrates it into a simple neural network:
Step 1: Create a custom class named “SquaredLayer”. Save this class in a file with the same name, “SquaredLayer.m”.
classdef SquaredLayer < nnet.layer.Layer
% Custom layer to perform element-wise squaring
methods
function layer = SquaredLayer(name)
% Create a SquaredLayer
layer.Name = name;
layer.Description = 'Element-wise square layer';
end
function Z = predict(layer, X)
% Forward input data through the layer at prediction time
Z = X .^ 2;
end
function [dLdX] = backward(layer, X, Z, dLdZ, memory)
% Backward propagate the derivative of the loss function
dLdX = 2 * X .* dLdZ;
end
end
end
Step 2: Define a neural network and while defining the layers you could use this custom class, in this case I have used built in classes “digitTrain4DArrayData” and “digitTest4DArrayData” provided by MATLAB.
% Load example data
[XTrain,YTrain,anglesTrain] = digitTrain4DArrayData;
[XTest,YTest,anglesTest] = digitTest4DArrayData;
% Define the layers of the network
layers = [
imageInputLayer([28 28 1], 'Name', 'input') % Example input layer for 28x28 grayscale images
SquaredLayer('squared') % Custom squared layer
fullyConnectedLayer(10, 'Name', 'fc')
softmaxLayer('Name', 'softmax')
classificationLayer('Name', 'output')
];
% Specify training options
options = trainingOptions('adam', ...
'MaxEpochs', 10, ...
'InitialLearnRate', 0.01, ...
'Verbose', false, ...
'Plots', 'training-progress');
% Train the network
net = trainNetwork(XTrain, YTrain, layers, options);
% Test the network on the test data
YPred = classify(net, XTest);
accuracy = sum(YPred == YTest) / numel(YTest);
disp(['Test accuracy: ', num2str(accuracy)]);
You can refer to the documentation below for more information: Define Custom Deep Learning Layer with Multiple Inputs: https://www.mathworks.com/help/releases/R2021a/deeplearning/ug/define-custom-layer-with-multiple-inputs.html

카테고리

Help CenterFile Exchange에서 Image Data Workflows에 대해 자세히 알아보기

태그

제품


릴리스

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by