'pca' vs 'svd' or 'eig' functions

조회 수: 12 (최근 30일)
Pranav Aggarwal
Pranav Aggarwal 2021년 3월 16일
댓글: Pranav Aggarwal 2021년 3월 18일
Hi,
I am trying to generate the principal components from a set of data. However, i get an entirely different result when i use the 'pca' function compared to the 'eig' function. The 'eig' function gives the same results as the 'svd' function for my data.
I am using the raw data as input into the 'pca' function.
For 'eig' - I am calculating the correlation matrix and then using that as input into the 'eig' function.
I am very puzzled on why i get different results and would be grateful for your help! Code below:
testmat = rand(20,5);
testcorrelMat = corr(testmat);
testeig = eig(testcorrelMat);
testsvd = svd(testcorrelMat);
[testcoeff, ~, testlatent] = pca(testmat);
[sort(testsvd), sort(testeig), sort(testlatent)]

채택된 답변

the cyclist
the cyclist 2021년 3월 16일
You will get the same result from pca() if you standardize the input data first:
rng default
testmat = rand(20,5);
% Standardize the data
testmat = (testmat - mean(testmat))./std(testmat);
testcorrelMat = corr(testmat);
testeig = eig(testcorrelMat);
testsvd = svd(testcorrelMat);
[testcoeff, ~, testlatent] = pca(testmat);
[sort(testsvd), sort(testeig), sort(testlatent)]
ans = 5×3
0.2238 0.2238 0.2238 0.6422 0.6422 0.6422 0.8504 0.8504 0.8504 1.4606 1.4606 1.4606 1.8229 1.8229 1.8229
  댓글 수: 2
Steven Lord
Steven Lord 2021년 3월 16일
To normalize the data you can use the normalize function to normalize by 'zscore' (which is the default normalization method.)
rng default
testmat = rand(20,5);
% Standardize the data
testmat = normalize(testmat);
testcorrelMat = corr(testmat);
testeig = eig(testcorrelMat);
testsvd = svd(testcorrelMat);
[testcoeff, ~, testlatent] = pca(testmat);
results = [sort(testsvd), sort(testeig), sort(testlatent)]
results = 5×3
0.2238 0.2238 0.2238 0.6422 0.6422 0.6422 0.8504 0.8504 0.8504 1.4606 1.4606 1.4606 1.8229 1.8229 1.8229
format longg
results - results(:, 1)
ans = 5×3
0 1.11022302462516e-16 -1.94289029309402e-16 0 4.44089209850063e-16 -9.99200722162641e-16 0 -1.11022302462516e-16 3.33066907387547e-16 0 -1.33226762955019e-15 -1.55431223447522e-15 0 0 -8.88178419700125e-16
Looks pretty good to me.
Pranav Aggarwal
Pranav Aggarwal 2021년 3월 18일
Thanks Steven and 'the cyclist' - solved!

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Dimensionality Reduction and Feature Extraction에 대해 자세히 알아보기

태그

제품


릴리스

R2017b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by