Errors in transfer learning using resnet101

조회 수: 2 (최근 30일)
KEN SUEMATSU
KEN SUEMATSU 2021년 3월 15일
댓글: Tan 2023년 5월 14일
I would like to use resnet101 to do transfer learning.
When I build the network and use the trainNetwork function as shown below, I get the following error. What is the cause?
Layer 'res2a': unconnected input. The input of each layer must be coupled with the output of another layer.
An unconnected input was detected:
net = resnet101;
layers = net.Layers;
layers = [
layers(1:344)
fullyConnectedLayer(Numberofclasses)
layers(346)
classificationLayer];
options = trainingOptions('sgdm',...
'MiniBatchSize',16,...
'InitialLearnRate', 0.0001, ...
...)
trainNetwork(TrainImage,TrainData,layers,options);

채택된 답변

Akira Agata
Akira Agata 2021년 3월 18일
Since ResNet-101 is imported as a DAGNetwork object, the following steps will be needed (more details can be found in this Link)
  1. Convert DAGNetwork object to LayerGraph object
  2. Replace the last few layers
  3. Freeze bias/weight of initial layers (optional)
  4. Re-connect all the layers in the original order by using the support function createLgraphUsingConnections
So the MATLAB code will be like this.
net = resnet101;
% 1. Convert DAGNetwork object to LayerGraph object
lgraph = layerGraph(net);
% 2. Replace the last few layers
lgraph = replaceLayer(lgraph,'fc1000',...
fullyConnectedLayer(Numberofclasses,'Name','fcNew'));
lgraph = replaceLayer(lgraph,'ClassificationLayer_predictions',...
classificationLayer('Name','ClassificationNew'));
% 4. Re-connect all the layers in the original order
% by using the support function createLgraphUsingConnections
layers = lgraph.Layers;
connections = lgraph.Connections;
lgraph = createLgraphUsingConnections(layers,connections);
% Train the network
options = trainingOptions('sgdm',...
'MiniBatchSize',16,...
'InitialLearnRate', 0.0001, ...
...)
net = trainNetwork(imdsTrain,lgraph,options);
  댓글 수: 3
baby
baby 2022년 2월 18일
I dont think its an error, its a warning but somehow it appears in red. You can ignore this and proceed with the training procedure, and to make sure you can use command:
analyzeNetwor(lgraph)
if found no error, the traning will process very nicely. ( I hope).
Tan
Tan 2023년 5월 14일
hi although using the command
layers = lgraph.Layers;
connections = lgraph.Connections;
lgraph = createLgraphUsingConnections(layers,connections);
it also show the same error:
trainedNet = trainNetwork(augmentedTrainingSet,lgraph,options);
Error using trainNetwork
Invalid network.
Caused by:
Layer 'inception_3a-output': Unconnected input. Each layer input must be connected to the output of another
layer.
Layer 'inception_3b-output': Unconnected input. Each layer input must be connected to the output of another
layer.
Layer 'inception_4a-output': Unconnected input. Each layer input must be connected to the output of another
layer.
Layer 'inception_4b-output': Unconnected input. Each layer input must be connected to the output of another
layer.
Layer 'inception_4c-output': Unconnected input. Each layer input must be connected to the output of another
layer.
Layer 'inception_4d-output': Unconnected input. Each layer input must be connected to the output of another
layer.
Layer 'inception_4e-output': Unconnected input. Each layer input must be connected to the output of another
layer.
Layer 'inception_5a-output': Unconnected input. Each layer input must be connected to the output of another
layer.
Layer 'inception_5b-output': Unconnected input. Each layer input must be connected to the output of another
layer.

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기

제품


릴리스

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by