Determining the optimal number of clusters in Kmeans technique
조회 수: 38 (최근 30일)
이전 댓글 표시
I have a matrix like "A". I want to cluster its data using K-Means method.
A=[45 58 59
46 76 53
57 65 71
40 55 59
25 35 42
34 51 74
46 90 53
46 63 60
33 50 78
53 57 60
31 28 72
49 49 53
76 88 82
34 100 198
35 35 35];
I used the following command to cluster data.
[Data_clustred, c]= kmeans(A,num_cluster);
by the way, knowing the optimal number of cluster is neccessary to me.
Is there any criteria that determines the optimal numbers of clusters? if so, How can I write its programm.
any help whould be appreciated. Thanks in advance.
댓글 수: 0
채택된 답변
추가 답변 (2개)
kira
2019년 5월 2일
old question, but I just found a way myself looking at matlab documentation:
klist=2:n;%the number of clusters you want to try
myfunc = @(X,K)(kmeans(X, K));
eva = evalclusters(net.IW{1},myfunc,'CalinskiHarabasz','klist',klist)
classes=kmeans(net.IW{1},eva.OptimalK);
댓글 수: 0
참고 항목
카테고리
Help Center 및 File Exchange에서 Cluster Analysis and Anomaly Detection에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!