Determining the optimal number of clusters in Kmeans technique
    조회 수: 12 (최근 30일)
  
       이전 댓글 표시
    
I have a matrix like "A". I want to cluster its data using K-Means method.
A=[45  58  59
46  76  53
57  65  71
40  55  59
25  35  42
34  51  74
46  90  53
46  63  60
33  50  78
53  57  60
31  28  72
49  49  53
76  88  82
34  100  198
35  35  35];
I used the following command to cluster data.
[Data_clustred, c]= kmeans(A,num_cluster);
by the way, knowing the optimal number of cluster is neccessary to me.
Is there any criteria that determines the optimal numbers of clusters? if so, How can I write its programm.
any help whould be appreciated. Thanks in advance.
댓글 수: 0
채택된 답변
추가 답변 (2개)
  kira
      
 2019년 5월 2일
        old question, but I just found a way myself looking at matlab documentation:
klist=2:n;%the number of clusters you want to try
myfunc = @(X,K)(kmeans(X, K));
eva = evalclusters(net.IW{1},myfunc,'CalinskiHarabasz','klist',klist)
classes=kmeans(net.IW{1},eva.OptimalK);
댓글 수: 0
참고 항목
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!



