How to train the neural network using RBF?

조회 수: 5 (최근 30일)
Minu
Minu 2013년 5월 8일
편집: Walter Roberson 2016년 10월 24일
Hi,
I am using Radial Basis Function for training the neural network.But during training using nntool, training option is disabled so i simulate the network.I want to know whether training is performed on RBF? If training not happends then how to test the data? Please help me to solve this problem...

채택된 답변

Greg Heath
Greg Heath 2013년 5월 8일
편집: Greg Heath 2013년 5월 8일
If you are using newrb, there is no separation between the creation and training phases.
Therefore, once you create it, it trains itself, depending on the input parameters.
help newrb
doc newrb
Hope this helps.
Thank you for formally accepting my answer.
Greg
  댓글 수: 1
Daniel Malabanan
Daniel Malabanan 2014년 2월 11일
Dear Sir,
May I just clarify with regards to training RBF:
1. Since training and creation is included in newrb, does it means that there's no need to pass for a couple of times (I'm referring to batch training epoch) all the input data to training for weights and bias adjustment?
2. Also, after weights and biases are defined in designrb.m at newrb.m, I simulated my output network using sim.m. I tried to train my network using 'train' command with 1000 epochs and 0 goal. Then I again simulate using sim.m the resulting network. However, there is no difference with the output of the my first sim and my second sim. Does it mean that my designrb already obtained the optimal weights and biases?
Thank you so much

댓글을 달려면 로그인하십시오.

추가 답변 (1개)

Greg Heath
Greg Heath 2014년 2월 12일
1. When you create newrb it automatically trains itself without the trn/val/set data division. Therefore, only include the training set in the call.
2. Standardize your regression data to zero-mean/unit-variance. Use a MSE goal 100 times smaller than the average variance of the target rows. Train many nets with different spreads in [ 0.1 10 ] and choose the net with the best holdout validation set performance.
3. For c-class classification the targets should be columns of the c-dimensional unit matrix eye(c)
4. Obtain an UNBIASED estimate of generalization (i.e., nontraining and nonvalidation) performance with the holdout test set.
5. If unsatisfactory, redivide into trn/val/tst sets and try again.
6. I have posted advice, directions and examples. Search the NEWSGROUP and ANSWERS using
greg newrb
6. Please post the addresses of any posts you find helpful.
Greg

카테고리

Help CenterFile Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by