How to divide an image (700X314 pixel) to 48 part equally

조회 수: 5 (최근 30일)
Khalid
Khalid 2013년 5월 6일
댓글: Image Analyst 2016년 11월 23일
I have an image (700X314 pixel, color),
I want to divide this image to 48 part equally (4 'row' X 12 'colum'), how I can do this using matlab code.
  댓글 수: 1
Khalid
Khalid 2013년 5월 6일
So is it suitable to re-sized the image in order to be divided to 48, if not what is the matlab code of dividing an color image to 32 parts (4X8) for example. Just I want to know the code concept in such things like that.

댓글을 달려면 로그인하십시오.

답변 (1개)

Image Analyst
Image Analyst 2013년 5월 6일
Here's my demo for how to split an image into blocks. Demos with two different methods. Feel free to use and adapt as needed.
% Demo to divide an image up into blocks (non-overlapping tiles).
% The first way to divide an image up into blocks is by using mat2cell().
% In this demo, I demonstrate that with a color image.
% Another way to split the image up into blocks is to use indexing.
% In this demo, I demonstrate that method with a grayscale image.
clc; % Clear the command window.
close all; % Close all figures (except those of imtool.)
workspace; % Make sure the workspace panel is showing.
fontSize = 20;
% Read in a standard MATLAB color demo image.
folder = fullfile(matlabroot, '\toolbox\images\imdemos');
baseFileName = 'peppers.png';
% Get the full filename, with path prepended.
fullFileName = fullfile(folder, baseFileName);
if ~exist(fullFileName, 'file')
% Didn't find it there. Check the search path for it.
fullFileName = baseFileName; % No path this time.
if ~exist(fullFileName, 'file')
% Still didn't find it. Alert user.
errorMessage = sprintf('Error: %s does not exist.', fullFileName);
uiwait(warndlg(errorMessage));
return;
end
end
% Read the image from disk.
rgbImage = imread(fullFileName);
% Test code if you want to try it with a gray scale image.
% Uncomment line below if you want to see how it works with a gray scale image.
% rgbImage = rgb2gray(rgbImage);
% Display image full screen.
imshow(rgbImage);
% Enlarge figure to full screen.
set(gcf, 'units','normalized','outerposition',[0 0 1 1]);
drawnow;
% Get the dimensions of the image. numberOfColorBands should be = 3.
[rows columns numberOfColorBands] = size(rgbImage)
%==========================================================================
% The first way to divide an image up into blocks is by using mat2cell().
blockSizeR = 150; % Rows in block.
blockSizeC = 100; % Columns in block.
% Figure out the size of each block in rows.
% Most will be blockSizeR but there may be a remainder amount of less than that.
wholeBlockRows = floor(rows / blockSizeR);
blockVectorR = [blockSizeR * ones(1, wholeBlockRows), rem(rows, blockSizeR)];
% Figure out the size of each block in columns.
wholeBlockCols = floor(columns / blockSizeC);
blockVectorC = [blockSizeC * ones(1, wholeBlockCols), rem(columns, blockSizeC)];
% Create the cell array, ca.
% Each cell (except for the remainder cells at the end of the image)
% in the array contains a blockSizeR by blockSizeC by 3 color array.
% This line is where the image is actually divided up into blocks.
if numberOfColorBands > 1
% It's a color image.
ca = mat2cell(rgbImage, blockVectorR, blockVectorC, numberOfColorBands);
else
ca = mat2cell(rgbImage, blockVectorR, blockVectorC);
end
% Now display all the blocks.
plotIndex = 1;
numPlotsR = size(ca, 1);
numPlotsC = size(ca, 2);
for r = 1 : numPlotsR
for c = 1 : numPlotsC
fprintf('plotindex = %d, c=%d, r=%d\n', plotIndex, c, r);
% Specify the location for display of the image.
subplot(numPlotsR, numPlotsC, plotIndex);
% Extract the numerical array out of the cell
% just for tutorial purposes.
rgbBlock = ca{r,c};
imshow(rgbBlock); % Could call imshow(ca{r,c}) if you wanted to.
[rowsB columnsB numberOfColorBandsB] = size(rgbBlock);
% Make the caption the block number.
caption = sprintf('Block #%d of %d\n%d rows by %d columns', ...
plotIndex, numPlotsR*numPlotsC, rowsB, columnsB);
title(caption);
drawnow;
% Increment the subplot to the next location.
plotIndex = plotIndex + 1;
end
end
% Display the original image in the upper left.
subplot(4, 6, 1);
imshow(rgbImage);
title('Original Image');
% Inform user of next stage where we process a gray scale image.
promptMessage = sprintf('Now I will do the same for a gray scale image.');
titleBarCaption = 'Continue?';
button = questdlg(promptMessage, titleBarCaption, 'OK', 'Cancel', 'OK');
if strcmpi(button, 'Cancel')
return;
end
%==============================================================================
% Another way to split the image up into blocks is to use indexing.
% Read in a standard MATLAB gray scale demo image.
folder = fullfile(matlabroot, '\toolbox\images\imdemos');
baseFileName = 'cameraman.tif';
fullFileName = fullfile(folder, baseFileName);
% Get the full filename, with path prepended.
fullFileName = fullfile(folder, baseFileName);
if ~exist(fullFileName, 'file')
% Didn't find it there. Check the search path for it.
fullFileName = baseFileName; % No path this time.
if ~exist(fullFileName, 'file')
% Still didn't find it. Alert user.
errorMessage = sprintf('Error: %s does not exist.', fullFileName);
uiwait(warndlg(errorMessage));
return;
end
end
grayImage = imread(fullFileName);
% Get the dimensions of the image. numberOfColorBands should be = 1.
[rows columns numberOfColorBands] = size(grayImage);
% Display the original gray scale image.
figure;
subplot(2, 2, 1);
imshow(grayImage, []);
title('Original Grayscale Image', 'FontSize', fontSize);
% Enlarge figure to full screen.
set(gcf, 'units','normalized','outerposition',[0 0 1 1]);
% Divide the image up into 4 blocks.
% Let's assume we know the block size and that all blocks will be the same size.
blockSizeR = 128; % Rows in block.
blockSizeC = 128; % Columns in block.
% Figure out the size of each block.
wholeBlockRows = floor(rows / blockSizeR);
wholeBlockCols = floor(columns / blockSizeC);
% Preallocate a 3D image
image3d = zeros(wholeBlockRows, wholeBlockCols, 3);
% Now scan though, getting each block and putting it as a slice of a 3D array.
sliceNumber = 1;
for row = 1 : blockSizeR : rows
for col = 1 : blockSizeC : columns
% Let's be a little explicit here in our variables
% to make it easier to see what's going on.
% Determine starting and ending rows.
row1 = row;
row2 = row1 + blockSizeR - 1;
row2 = min(rows, row2); % Don't let it go outside the image.
% Determine starting and ending columns.
col1 = col;
col2 = col1 + blockSizeC - 1;
col2 = min(columns, col2); % Don't let it go outside the image.
% Extract out the block into a single subimage.
oneBlock = grayImage(row1:row2, col1:col2);
% Specify the location for display of the image.
subplot(2, 2, sliceNumber);
imshow(oneBlock);
% Make the caption the block number.
caption = sprintf('Block #%d of 4', sliceNumber);
title(caption, 'FontSize', fontSize);
drawnow;
% Assign this slice to the image we just extracted.
if (row2-row1+1) == blockSizeR && (col2-col1+1) == blockSizeC
% Then the block size is the tile size,
% so add a slice to our 3D image stack.
image3D(:, :, sliceNumber) = oneBlock;
else
newTileSize = [(row2-row1+1), (col2-col1+1)];
warningMessage = sprintf('Warning: this block size of %d rows and %d columns\ndoes not match the preset block size of %d rows and %d columns.\nIt will not be added to the 3D image stack.',...
newTileSize(1), newTileSize(2), blockSizeR, blockSizeC);
uiwait(warndlg(warningMessage));
end
sliceNumber = sliceNumber + 1;
end
end
% Now image3D is a 3D image where each slice,
% or plane, is one quadrant of the original 2D image.
msgbox('Done with demo! Check out the two figures.');
  댓글 수: 8
Walter Roberson
Walter Roberson 2016년 11월 23일
Do you mean that you want the grid to appear?
Image Analyst
Image Analyst 2016년 11월 23일
You could use pcolor() with special certain options. However you'll have to duplicate the last row and last column because pcolor() doesn't show those.

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Computer Vision with Simulink에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by