nonlinear and linear regression

조회 수: 1 (최근 30일)
Mhmmd Sjj
Mhmmd Sjj 2021년 2월 15일
답변: William Rose 2021년 3월 30일
I have created a script plus a function to use for nonlinear least square optimization. I have compared it with linear regression and also with built-in functions in MATLAB such as fminsearch,fminunc, lsqnonlin. The results for all regression models are surprisingly the same and I don't know why. Can anyone help me with that please?Here is my function:
function result = NonLsq(w,x,y)
ei = -(w(1).*x+w(2))+y;
result = sum(ei.^2);
end
And the following is my main script:
clc; clear; close all;
% { Linear And Nonlinear Curvefitting}
%% 1. One Dimensional data
x = [0.5 1 2 3 4];
y = [10.4 5.8 3.3 2.4 2];
xMin = min(x);
xMax = max(x);
n = 100; % Number of data which sould be interpolated
xInterp = linspace(xMin,xMax,n);
yInterp1 = interp1(x,y,xInterp);
yInterp2 = interp1(x,y,xInterp,'spline');
%% 2. NonLinear Least Square
% Initial Guess
g = @(w,x,y) (w(1).*x+w(2))-y;
X01 = [0.15 0.55];
X02 = [0.4 0.8];
X03 = [0.7 48];
% X0 = [0.15 0.55]';
Options1 = optimset('Display','Iter','TolX',1e-5);
Options2 = optimset('Display','on');
Options3 = optimset('MaxIter',50,'TolFun',1e-4);
p1_Nonlin = fminsearch(@NonLsq,X01,Options1,x,y);
p2_Nonlin = fminunc(@NonLsq,X02,Options2,x,y);
p3_Nonlin = lsqnonlin(g,X03,[],[],Options3,x,y);
plot(x,y,'o','MarkerSize',8,'LineWidth',3,'MarkerFaceColor','k');
hold on
grid on
plot(xInterp,yInterp1,'r--','LineWidth',2)
hold on
plot(xInterp,yInterp2,'b:','LineWidth',2)
legend('Spline INterpolated')
hold on
plot(xInterp,pLinear_Interp,'k*','LineWidth',2)
plot(xInterp,P1_Nonlin_Interp,'c.','LineWidth',2,'MarkerSize',12)
hold on
plot(xInterp,P2_Nonlin_Interp,'m','LineWidth',2)
hold on
plot(xInterp,P3_Nonlin_Interp,'g','LiNEwidth',2)
legend('Original Data','Linear Interpolatn','Linear Spline','Linear Regression'...
,'FminSearch','FminUnc','LsqNonLinear')
Could it be related to the function I'm trying to optimize?

채택된 답변

William Rose
William Rose 2021년 3월 30일
You get the same results because your model g() is linear in w(1) and w(2):
g = @(w,x,y) (w(1).*x+w(2))-y;
The error function NonLsq() for the noninear case uses the same linear model. Thus linear and nonlinear fits find the same solution.
By the way, you do not need the dot-multiply in ei=-(w(1).*x+w(2))+y. Since w(1) is a scalar, you can do ei=-(w(1)*x+w(2))+y. The same is true for the deifnition of g().

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Systems of Nonlinear Equations에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by