custom regression (Multiple output)

조회 수: 1 (최근 30일)
jaehong kim
jaehong kim 2021년 2월 12일
댓글: jaehong kim 2021년 2월 14일
Hi, I am working on a custom regression neural network.
Inputs size=2 and Output size=6 // Number of Data =25001
However, after a certain iteration, it was confirmed that all Data(25001) outputs are the same.
x axis=Target /// y axis=output
Initially, the output is different, but it seems that the output is the same after a while.
My code is here.
--------------------------------------------------------------------------------------------
clear,clc,close all
Data=readmatrix('sim_linear.xlsx');
Y_at=Data(:,2);
Y_ft=Data(:,3);
F_at=Data(:,4);
F_ft=Data(:,5);
P_cot=Data(:,6);
T_cot=Data(:,7);
T_bt=Data(:,8);
F_et=Data(:,9);
T_et=Data(:,10);
PW_t=Data(:,11);
idx=randperm(numel(Y_at));
Y_at=Y_at(idx);
Y_ft=Y_ft(idx);
F_at=F_at(idx);
F_ft=F_ft(idx);
P_cot=P_cot(idx);
T_cot=T_cot(idx);
T_bt=T_bt(idx);
F_et=F_et(idx);
T_et=T_et(idx);
PW_t=PW_t(idx);
Input=cat(2,Y_at,Y_ft);
Output=cat(2,F_ft,T_cot,T_bt,F_et,T_et,PW_t);
Inputs=transpose(Input);
Outputs=transpose(Output);
layers = [
featureInputLayer(2,'Name','in')
fullyConnectedLayer(64,'Name','fc1')
tanhLayer('Name','tanh1')
fullyConnectedLayer(32,'Name','fc2')
tanhLayer('Name','tanh2')
fullyConnectedLayer(16,'Name','fc3')
tanhLayer('Name','tanh3')
fullyConnectedLayer(8,'Name','fc4')
tanhLayer('Name','tanh4')
fullyConnectedLayer(6,'Name','fc5')
];
lgraph=layerGraph(layers);
dlnet=dlnetwork(lgraph);
iteration = 1;
averageGrad = [];
averageSqGrad = [];
learnRate = 0.005;
gradDecay = 0.75;
sqGradDecay = 0.95;
output=[];
dlX = dlarray(Inputs,'CB');
for it=1:500
iteration = iteration + 1;
[out,loss,NNgrad]=dlfeval(@gradients,dlnet,dlX,Outputs);
[dlnet.Learnables,averageGrad,averageSqGrad] = adamupdate(dlnet.Learnables,NNgrad,averageGrad,averageSqGrad,iteration,learnRate,gradDecay,sqGradDecay);
if mod(it,100)==0
disp(it);
end
end
function [out,loss,NNgrad,grad1,grad2]=gradients(dlnet,dlx,t)
out=forward(dlnet,dlx);
loss2=sum((out(1,:)-t(1,:)).^2)+sum((out(2,:)-t(2,:)).^2)+sum((out(3,:)-t(3,:)).^2)+sum((out(4,:)-t(4,:)).^2)+sum((out(5,:)-t(5,:)).^2)+sum((out(6,:)-t(6,:)).^2);
loss=loss2;
[NNgrad]=dlgradient(loss,dlnet.Learnables);
end
-------------------------------------------------------------------------------------------------------------------------------------------------
Thanks for reading my question. I hope that a great person can answer.
  댓글 수: 3
jaehong kim
jaehong kim 2021년 2월 14일
편집: jaehong kim 2021년 2월 14일
Thank you for reading my question!
Is there any problem?
Is it for presenting an answer?
jaehong kim
jaehong kim 2021년 2월 14일
Inputs=2*10
0.1992 -0.7085 -0.0474 -0.4406 -0.1188 -0.3818 -0.8150 -0.3583 -0.4511 -0.4783
0.9204 0.2764 0.7833 0.5459 0.7072 0.5024 0.2000 0.5996 0.5400 0.5149

댓글을 달려면 로그인하십시오.

답변 (0개)

카테고리

Help CenterFile Exchange에서 Image Data Workflows에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by