Adjust measurement data with different vector lengths using interpolation

조회 수: 11 (최근 30일)
Mepe
Mepe 2021년 1월 26일
댓글: Jan 2021년 1월 27일
I have carried out various series of measurements from which I would like to form arithmetic mean values.
The problem is that one series of measurements has 1200 data points (Vector_1), the second only 1000 (Vector_2) and the third 800 data points (Vector_3).
I tried to adapt this to the largest vector using interpolation:
maxLength = max([length(Vector_1), length(Vector_2), length(Vector_2)]);
xFit = 1:maxLength;
IP_Vector_1 = interp1(1:length(Vector_1), Vector_1, xFit);
IP_Vector_2 = interp1(1:length(Vector_2), Vector_2, xFit);
IP_Vector_3 = interp1(1:length(Vector_3), Vector_3, xFit);
However, this code does not seem to distribute the interpolation evenly, but rather puts it at the end (with NaN). Does anyone have any idea what the problem is or have another suggestion how that could be solved elegantly in Matlab?
Many Thanks!
  댓글 수: 2
David Hill
David Hill 2021년 1월 26일
Do you just want the mean of all your data? I don't understand your question.
mean([Vector1,Vector_2,Vector_3]);
Mepe
Mepe 2021년 1월 26일
Sorry for the confusion. The mean values and further operations will be formed later. First of all, it would be important to expand the Vectors.

댓글을 달려면 로그인하십시오.

채택된 답변

Jan
Jan 2021년 1월 26일
편집: Jan 2021년 1월 26일
n1 = length(Vector_1);
n2 = length(Vector_2);
n3 = length(Vector_3);
nMax = max([n1, n2, n3]);
IP_Vector_1 = interp1(1:n1, Vector_1, linspace(1, n1, nMax));
IP_Vector_2 = interp1(1:n2, Vector_2, linspace(1, n2, nMax));
IP_Vector_3 = interp1(1:n3, Vector_3, linspace(1, n3, nMax));
Now the vectors have all nMax steps. Interpolating a vector with x=1:10 at the steps x = 1:20 appends 10 NaNs, because thius is an extrapolation. You need the interval [1, 10] split into nMax steps instead:
1:((10 - 1) / (nMax - 1)):10
% or nicer:
linspace(1, 10, nMax)
Note 1: Normalizing with linear interpolation can destroy important information, if the sampling frequency is low:
v1 = [1, 10, 1];
v2 = [1, 1, 1, 1];
vi1 = interp1(1:n1, v1, linspace(1, n1, nMax)) % [1, 7, 7, 1]
vi2 = interp1(1:n2, v2, linspace(1, n2, nMax)) % [1, 1, 1, 1]
The large peak in v1 is damped. So it is a better idea to use nMax = q * max([n1, n2, n3]) with q = 2 or 5. In a smart program this factor is implemented as variable such that you can compare the results for different scaling factors.
Note 2: If this is time-ciritical, use FEX: ScaleTime, which interpolates faster than INTERP1 or GriddedInterpolant.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Interpolation에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by