Bad results obtained for LS-SVM regression. Any help?

조회 수: 2 (최근 30일)
Chaou
Chaou 2013년 4월 14일
댓글: SANA 2018년 4월 5일
Hello. Although I read many times the tutorial for this LS-SVM toolbox http://www.esat.kuleuven.be/sista/lssvmlab/ , I'm still having very bad results when I use it for regression.
Here is the code I execute:
% Initialisation of the model
model = initlssvm(X,Y,'f',[],[],'RBF_kernel','o');
% Tuning of the model, optimizing the choice of gam and sig2
model = tunelssvm(model,'simplex','crossvalidatelssvm',{10,'mae'});
% Training
model = trainlssvm(model);
% Prediction of results
Yt=simlssvm(model,Xt)
The results obtained are far different from the initial ones. I really don't understand what I do wrong. Any one help me, please ? Thank you!
  댓글 수: 2
Gustavo
Gustavo 2013년 10월 22일
When you use the 'o' in initlssvm you are not normalizing the data, which is quite important in many cases for regression. Can you try without it?
SANA
SANA 2018년 4월 5일
My results are worse, but you can try giving different values of sig2 and gam in line: model = initlssvm(X,Y,'f',[gam],[sig2],'RBF_kernel','o'); This may solve the problem. I am getting a warning: *****> In crossvalidatelssvm (line 96) In tunelssvm>simanncostfun2 (line 485) In tunelssvm>@(x)simanncostfun2(x,model,costfun,costargs) (line 168) In csa (line 79) In tunelssvm (line 168) In tunelssvm (line 132) Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 5.551115e-17. Any idea how to fix this?

댓글을 달려면 로그인하십시오.

답변 (0개)

카테고리

Help CenterFile Exchange에서 MATLAB에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by