You must pass X as a floating-point matrix.
조회 수: 5 (최근 30일)
이전 댓글 표시
I am building a GUI to classify breast images. I am using SVM as the classifier technique. However, I am getting an error message. Please find my code an the error message below. Any help would be appreciated.
File=handles.File;
InputImage=handles.InputImage;
TestSet=InputImage;
Labels = table2array(File);
Training=Labels(1:2004,1:9);
class=Labels(:,10);
SVMmodel= fitcsvm(Training, class, 'KernelFunction', 'Linear', 'Standardize', true, 'ClassNames', {'1', '2'});
result = predict(SVMmodel, TestSet);
result=num2str(result);
The error message is displayed below:
Error using classreg.learning.impl.CompactSVMImpl/score (line 45)
You must pass X as a floating-point matrix.
Error in classreg.learning.classif.CompactClassificationSVM/score (line 591)
f = score(this.Impl,X,true,varargin{:});
Error in classreg.learning.classif.ClassificationModel/predict (line 411)
scores = score(this,X,varargin{:});
Error in classreg.learning.classif.CompactClassificationSVM/predict (line 433)
predict@classreg.learning.classif.ClassificationModel(this,X,varargin{:});
Error in new>pushbutton4_Callback (line 143)
result = predict(SVMmodel, TestSet);
Error in gui_mainfcn (line 95)
feval(varargin{:});
Error in new (line 42)
gui_mainfcn(gui_State, varargin{:});
Error in matlab.graphics.internal.figfile.FigFile/read>@(hObject,eventdata)new('pushbutton4_Callback',hObject,eventdata,guidata(hObject))
Error while evaluating UIControl Callback.
댓글 수: 1
Athrey Ranjith Krishnanunni
2021년 1월 6일
From the documentation for predict, it says that the syntax is
predict(Mdl,X)
where X is the predictor data, and should be a numeric array.
In your case, X is TestSet, so try running
whos('TestSet')
in the command line to see what comes up under the Size and Class headings.
채택된 답변
Ive J
2021년 1월 6일
Your TestSet must have the same structure as your Training set. You can try this
result = predict(SVMmodel, Labels(:, 1:9));
댓글 수: 3
Walter Roberson
2021년 1월 7일
The return value from predict is labels in the same format as they were input to ficsvm. Your two labels are {'1', '2'} so you get a cell array of labels returned.
Consider changing the {'1', '2'} to be {'Malignant', 'Benign'} and then you would not have to do the if .
추가 답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Matrix Indexing에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!