MATLAB equivalent functions in Keras

조회 수: 5 (최근 30일)
Ruhi Thomas
Ruhi Thomas 2021년 1월 2일
답변: Aneela 2024년 9월 9일
layers = [ ...
sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits1)
lstmLayer(numHiddenUnits2)
fullyConnectedLayer(numResponses)
regressionLayer
];
What would be these layers be in Keras?
  댓글 수: 1
Ruhi Thomas
Ruhi Thomas 2021년 1월 2일
i know lstmLayer is tf.keras.layers.LSTM
What about the others?

댓글을 달려면 로그인하십시오.

답변 (1개)

Aneela
Aneela 2024년 9월 9일
Hi Ruhi Thomas,
If tf.keras is the way you imported Keras from TensorFlow, the above layers are equivalent to the following layers in Keras:
sequenceInputLayer(inputSize)
inputLayer= tf.keras.layers.Input(shape=(None, inputSize))
lstmLayer(numHiddenUnits1) –
lstm_layer1=tf.keras.layers.LSTM(numHiddenUnits1, return_sequences=True)(inputLayer)
lstmLayer(numHiddenUnits2) –
lstm_layer2=tf.keras.layers.LSTM(numHiddenUnits2, return_sequences=True)(inputLayer)
fullyConnectedLayer(numResponses)
dense_layer = tf.keras.Layers.Dense(numResponses)(lstm_layer2)
regressionLayer
  • In keras, there is no separate need for regression layer, instead we specify the loss function as part of the model compilation.
  • For a regression task, loss functions like “mean_squared_error,mean_absolute_error” are typically used.
model = Model(inputs=input_layer, outputs=dense_layer)
model.compile(optimizer='adam', loss='mean_squared_error')
Hope this helps!!

카테고리

Help CenterFile Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기

제품


릴리스

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by