Linear model fit error

조회 수: 7 (최근 30일)
Noe Sanchez
Noe Sanchez 2020년 12월 18일
답변: dpb 2020년 12월 19일
clear all;
close all;
clc;
x1 = [7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 6.5 8.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5];
x2 = [12 12 12 12 12 12 12 12 20 20 20 20 20 20 20 20 16 16 16 16 16 16 8 24 16 16 16];
x3 = [25 19 19 25 19 25 25 19 19 25 25 19 25 19 19 25 22 22 22 22 22 22 22 22 16 28 22];
y = [147 273.2 244.4 176.5 243.5 203.1 169.9 247.6 253.1 164.1 127.9 250.1 124.9 235.5 197.2 166.7 189.6 170.9 199.7 233.1 216 218.5 223.2 229.5 244.2 37.12 228.8];
x = [x1 x2 x3];
Mdl = fitlm(x,y,'polyijk');
disp(Mdl);
I am trying to get the estimates for the beta parameters of an equation by using least square method. There are three variables. I am trying to fit the data and do it but I get this error message.
Error in fitlm (line 121)
model = LinearModel.fit(X,varargin{:});
Error in leastsquare (line 9)
Mdl = fitlm(x,y,'polyijk');
Any tips are appreciated, thank you

답변 (2개)

Jeff Miller
Jeff Miller 2020년 12월 19일
Use the transpose operator on x1, x2, x3 and y so that these are column variables, like this for x1:
x1 = [7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 6.5 8.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5]';
Also, you are supposed to replace the 'ijk' with numbers in polyijk. For example, 'poly222' would give you a quadratic term for each predictor.
  댓글 수: 1
Noe Sanchez
Noe Sanchez 2020년 12월 19일
Ok, I will try this tomorrow morning and will let you know if it works. Thank you very much

댓글을 달려면 로그인하십시오.


dpb
dpb 2020년 12월 19일
x1 = [7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 6.5 8.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5].';
x2 = [12 12 12 12 12 12 12 12 20 20 20 20 20 20 20 20 16 16 16 16 16 16 8 24 16 16 16].';
x3 = [25 19 19 25 19 25 25 19 19 25 25 19 25 19 19 25 22 22 22 22 22 22 22 22 16 28 22].';
y = [147 273.2 244.4 176.5 243.5 203.1 169.9 247.6 253.1 164.1 127.9 250.1 124.9 235.5 197.2 166.7 189.6 170.9 199.7 233.1 216 218.5 223.2 229.5 244.2 37.12 228.8];
x = [x1 x2 x3];
Mdl = fitlm(x,y,'poly111')
Mdl =
Linear regression model:
y ~ 1 + x1 + x2 + x3
Estimated Coefficients:
Estimate SE tStat pValue
________ ______ _______ __________
(Intercept) 451.82 98.208 4.6007 0.00012594
x1 14.292 11.423 1.2511 0.22346
x2 -1.8031 1.4279 -1.2628 0.21931
x3 -14.981 1.9038 -7.8691 5.6852e-08
Number of observations: 27, Error degrees of freedom: 23
Root Mean Squared Error: 28
R-squared: 0.739, Adjusted R-Squared: 0.705
F-statistic vs. constant model: 21.7, p-value = 6.77e-07
>>

카테고리

Help CenterFile Exchange에서 Linear and Nonlinear Regression에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by