Generated filter reduces signal time

조회 수: 2 (최근 30일)
farzad
farzad 2020년 12월 18일
댓글: Star Strider 2020년 12월 18일
Hi All
I desgined a filter with the following data, but it reduced the signal time to half , after filtering. is there a reason ? how to resolve?
function y = myFilter(x)
persistent Hd;
if isempty(Hd)
N = 3; % Order
Fstop1 = 55; % First Stopband Frequency
Fpass1 = 65; % First Passband Frequency
Fpass2 = 9998; % Second Passband Frequency
Fstop2 = 10000; % Second Stopband Frequency
Fs = 256000; % Sampling Frequency
h = fdesign.bandpass('n,fst1,fp1,fp2,fst2', N, Fstop1, Fpass1, Fpass2, ...
Fstop2, Fs);
Hd = design(h, 'equiripple');
set(Hd,'PersistentMemory',true);
end
y = filter(Hd,x);
end

답변 (1개)

Star Strider
Star Strider 2020년 12월 18일
The ‘y’ output should be the same length as the ‘x’ input. The filter should not change that.
It is important not to confuse time duration with frequency. The frequency displayed will only be up to the Nyquist frequency, half the original sampling frequency. (The Nyquist frequency is the highest frequency that can be uniquely resolvable in a sampled signal.)
  댓글 수: 6
farzad
farzad 2020년 12월 18일
Thank you very much! seems a good filtering. well there is a disturbing sinusoidal wave inside the signal, possibly from the electricty that feeds the accelerometer, I want to filter it out. it should be around 50 to 60Hz
Star Strider
Star Strider 2020년 12월 18일
If you want to filter out the mains frequency noise, the easiest way would be to use the bandstop function, introduced in R2018a. If you have an earlier version, it’s easy to design a IIR bandstop filter:
Fs = 256000; % Sampling Frequency
Fn = Fs/2; % Nyquist Frequency
Ws = [48 62]/Fn; % Stopband Frequency (Normalised)
Wp = [0.99 1.01].*Ws; % Passband Frequency (Normalised)
Rp = 1; % Passband Ripple
Rs = 90; % Passband Ripple (Attenuation)
[n,Wp] = ellipord(Wp,Ws,Rp,Rs); % Elliptic Order Calculation
[z,p,k] = ellip(n,Rp,Rs,Wp,'stop'); % Elliptic Filter Design: Zero-Pole-Gain
[sos,g] = zp2sos(z,p,k); % Second-Order Section For Stability
figure
freqz(sos, 2^20, Fs) % Filter Bode Plot
set(subplot(2,1,1), 'XLim',Wp*Fn.*[0.8 1.2]) % Optional
set(subplot(2,1,2), 'XLim',Wp*Fn.*[0.8 1.2]) % Optional
Use filtfilt to do the actual filtering:
y = filtfilt(sos,g,x);
Experiment with the ‘Ws’ frequencies to get the result you want. (The ‘Wp’ frequencies are calculated automatically from them.)

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Single-Rate Filters에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by