normalising and reverse normalising data
조회 수: 11 (최근 30일)
이전 댓글 표시
For forecasting , I normalised the data before training for test and train data , then when i plot the rmse , i get rmse 0.2.but when i try to reverse the normalised values to match with orginal target of test data it shows high error.
i have used below code to normalise and denormalise :
[pn,ps] = mapminmax(XTrain);
[tn,ts] = mapminmax(YTrain);
[qn,qs] = mapminmax(XTest);
[rn,rs] = mapminmax(YTest);
net = trainNetwork(pn,tn,layers,options);
YPred=predict(net,qn);
YPred1 = mapminmax('reverse',YPred,ts);
what could be the reason ?
댓글 수: 3
답변 (1개)
Karan Nandankar
2020년 12월 28일
Hi,
Looks like you have used the wrong Process Settings in the variable 'YPred1'. As I can see you are using XTest as your independent variable for Model Prediction, and the corresponding dependent variable YTest is normalized with Process Setting parameter 'rs'. However, for the variable YPred1 you have mapped the predictions against 'ts' (which is for YTrain).
In order to reverse the normalization, you can change the Process Setting parameter in YPred1 from 'ts' to 'rs'.
YPred1 = mapminmax('reverse',YPred,rs);
댓글 수: 0
참고 항목
카테고리
Help Center 및 File Exchange에서 Predictive Maintenance Toolbox에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!