MATLAB Answers

Solve as Optimization Problem in Matlab

조회 수: 9(최근 30일)
Paul Safier
Paul Safier 2020년 11월 18일
댓글: Paul Safier 2020년 11월 19일
I want to solve this simple equation as an optimization problem in Matlab. I have tried linprog, fmincon and fminunc and all do not seem to get it done. It is trivial to solve with brute-force in a loop (as below) and with Excel's Solver, but I want to be able to use one of Matlab's optimization routines too.
Solve:
15*i + 16*j + 17*k = 121
i, j and k are integers.
With loops, the solution is trivial:
for i = 0:100
for j = 0:100
for k = 0:100
val = 15*i + 16*j + 17*k;
if val == 121
disp('here!')
i,j,k
end
end
end
end
The solution is i=7, j=1, k=0.
I want to solve as:
min 121 - 15*i - 16*j - 17*k
s.t. i,j,k are >=0 integers.
What is the appropriate formulation as a optimization problem in Matlab?
Thanks!

채택된 답변

Ameer Hamza
Ameer Hamza 2020년 11월 18일
편집: Ameer Hamza 2020년 11월 18일
MATLAB have genetic algorithm ga() from the global optimization toolbox to solve such problems
f = @(x) 121 - 15*x(1) - 16*x(2) - 17*x(3);
sol = ga(@(x) f(x).^2, 3, [], [], [], [], [0 0 0], [], [], 1:3);
Result
>> sol
sol =
7 1 0
Of course, the problem has an infinite number of solutions. This is one of them
  댓글 수: 8
Ameer Hamza
Ameer Hamza 2020년 11월 18일
@John, I later realized my mistake of calling it a nonlinear problem. intlinprog() can also be used.

댓글을 달려면 로그인하십시오.

추가 답변(3개)

Bruno Luong
Bruno Luong 2020년 11월 18일
편집: Bruno Luong 2020년 11월 18일
c=[15 16 17];
t = 121;
A = [ c -1;
-c -1];
b = [ t;
-t];
f = [zeros(length(c),1); 1];
LB = 0*f;
x = intlinprog(f, 1:size(f), A, b, [], [], LB, []);
x = round(x);
i = x(1)
j = x(2)
k = x(3)
  댓글 수: 1
Paul Safier
Paul Safier 2020년 11월 18일
This works as well! Thanks Bruno Luong!!

댓글을 달려면 로그인하십시오.


Jon
Jon 2020년 11월 18일
편집: Jon 2020년 11월 18일
I think you can use the MILP mixed integer linear programming functionality if you have the optimization toolbox

John D'Errico
John D'Errico 2020년 11월 18일
편집: John D'Errico 2020년 11월 18일
In MATLAB, the solution is intlinprog. Of course, there may be multiple solutions. intlinprog does not give them, if any could exist. But there is no need for loops either, nor even to go out as far as 100.
Since we know
8*15
ans =
120
then we can limit the variables to be no larger than 8.
[x,y,z] = ndgrid(0:8,0:8,0:8);
ind = find(15*x + 16*y + 17*z == 121)
ind =
17
>> x(17)
ans =
7
>> y(17)
ans =
1
>> z(17)
ans =
0
So the only possible solution in positive integers is as found. Fast, efficient, and trivial to write. Sometimes brute force is the easiest thing. Would I have used intlinprog? Of course, as that is the obvious way to solve any problem of this class.
Had the problem been larger, perhaps to find a solution in integers to this?
137*x + 291*y + 313*z + 997*u + 1329*v + 237*w == 1 + 1e15
Now brute force will fail, because the search will push the search space out into numbers on the order of 1e13. And of course, even intlinprog might be at risk, due to the size of the right hand side, compared to the dynamic range of a double. This latter problem can now be solved more easily using number theory. How? Consider this...
(writing)
  댓글 수: 5
Paul Safier
Paul Safier 2020년 11월 19일
Thanks!

댓글을 달려면 로그인하십시오.

제품


릴리스

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by