이 질문을 팔로우합니다.
- 팔로우하는 게시물 피드에서 업데이트를 확인할 수 있습니다.
- 정보 수신 기본 설정에 따라 이메일을 받을 수 있습니다.
solving time differential equations in frequency domain
조회 수: 12 (최근 30일)
이전 댓글 표시
Mariam
2020년 11월 15일
If I have a set of time differential equations for rho_ij and I need to find let's say [d(rho_12)/d(omega)], where omega is frequency. Note that these differential equations have terms given as function of omega. what is the best way to do this task. Is it true to use (fft)
댓글 수: 3
Mariam
2020년 11월 16일
편집: Mariam
2020년 11월 16일
Dear Mathieu,
Thank you for your reply.
I need to know is it correct the method I have used to get rho_12 as function of freuency and the derivative of rho_12 with respect to the frequency by using the set of time differential equations. I neet your help to determine the best tool to solve this problem. Can FFT be useful towards achieving my aim.
Mariam
2020년 11월 16일
%-------------------------------------------------------------------------%
function MTMA1_GV(theta_M,theta_G,R,R_M,Omega_c,I_p,Difference)
tic
% The values for general constants in the system:
el_c=1.602e-19;hbar=(6.63e-34)/(2*pi);gamma_M=1e14;%(Damping in MPN)
epsilon_0=8.85e-12; k_B=1.381e-23; E_F=1.36*el_c;c=3e8;T=300;
lambda=570e-9; omegaR=2*pi*c/lambda;% the value of freq. at resonance
omega_pL=1.36e16;% For Plasmon frequency
V_F=1e8;mu=1e4; N=1e20;
%omega_c=omega; omega_p=omega;
%-------------------------------------------------------------------------%
% %
% The system parameters %
% %
%-------------------------------------------------------------------------%
% For the dimensions in the system;
L_x=0.5e-9; d=L_x; L_z=7e-9; L_y=L_z;
V_G=L_x*L_y*L_z; %V_G=pi*L_z^2*L_x;
V_M=(4/3)*pi*R_M^3;
%------------------------------
% For the angles in the system:
phi_1=pi-0.5*pi-theta_G; phi_2=pi-0.5*pi-theta_M;
theta_Q=phi_1+phi_2;
%------------------------------
% For the QD to be used in the system:
mu_12=1e-28;mu_13=mu_12;
gamma_12=1e9; gamma_13=gamma_12; gamma_32=0.35*gamma_12;
gamma_q=0.5*(gamma_12+gamma_13+gamma_32);
gamma=(el_c*V_F^2)/(mu*E_F);%(Damping in Graphene)
%-------------------------------------------------------------------------%
t=0:400e-15:400e-15;% Time interval
epsilon_b=12.9; epsilon_q=6.5; epsilon_inf=5.7;
E_p=sqrt(2*I_p/(epsilon_0*epsilon_q*c));
Omega_p=mu_12*E_p/hbar;
i=0;
%Difference=0.1e15; % the value of small change away from the resonance
Step=((omegaR+Difference*omegaR)-(omegaR-Difference*omegaR))/1000;
for omega_new=omegaR-Difference*omegaR:Step:omegaR+Difference*omegaR
i=i+1;
omega=omega_new;
%-------------------------------------------------------------------------%
epsilon_star=(2*epsilon_b+epsilon_q)/(3*epsilon_b);
epsilon_G= 1 + ...
(1i/(epsilon_0*d*omega))*(el_c^2/(8*hbar)* ...
(tanh((hbar*omega + 2*E_F)/(4*k_B*T)) + ...
tanh((hbar*omega - 2*E_F)/(4*k_B*T))) + ...
(-1i*el_c^2/(8*pi*hbar))* ...
(log((hbar*omega+2*E_F)^2/((hbar*omega-2*E_F)^2+(2*k_B*T)^2)))+...
(1i*el_c^2/(pi*hbar))*(E_F/(hbar*omega + ...
1i*hbar*gamma)));
epsilon_M=epsilon_inf-((omega_pL)^2/((omega)^2+1i*omega*gamma_M));
%-------------------------------
% For the system polarizability:
zeta_x=1 - pi*L_x/(2*L_z);zeta_z=pi*L_x/(4*L_z); %zeta_y= zeta_z;
alpha_Gx=4*pi*V_G*(epsilon_G-epsilon_b)/(3*epsilon_b + ...
3*zeta_x*(epsilon_G-epsilon_b));
alpha_Gz=4*pi*V_G*(epsilon_G-epsilon_b)/(3*epsilon_b + ...
3*zeta_z*(epsilon_G-epsilon_b));
alpha_M=V_M*((epsilon_M-epsilon_b)/(epsilon_M+2*epsilon_b));
%-------------------------------
% For the distances in the system:
R_GM=L_x+L_z+R;
R_QG=(sin(theta_M)/sin(theta_Q)*R_GM);
R_QM=(sin(theta_G)/sin(theta_Q)*R_GM);
%--------------------------------
pi_x=(1/(4*pi*epsilon_star))*(alpha_Gx*(3*cos(phi_1)-1)/R_QG^3 +...
alpha_M* (3*cos(phi_2)-1)/R_QM^3);
pi_z=(1/(4*pi*epsilon_star))*(alpha_Gz*(3*cos(theta_G)-1)/R_QG^3 +...
alpha_M* (3*cos(theta_M)-1)/R_QM^3);
%-------------------------------
phi_x=(-1*alpha_Gx*alpha_M/((R_GM^3)*(4*pi*epsilon_star)^2))*...
((3*cos(phi_1)-1)/R_QG^3 + (3*cos(phi_2)-1)/R_QM^3);
phi_z=(2*alpha_Gz*alpha_M/((R_GM^3)*(4*pi*epsilon_star)^2))*...
((3*cos(theta_G)-1)/R_QG^3 + 3*cos(theta_M)-1/R_QM^3);
%-------------------------------
Lambda_x=(mu_12^2/(2*pi*(4*pi*epsilon_star)^2*(hbar*epsilon_0*epsilon_b)))*...
(alpha_Gx*(3*cos(phi_1)-1)^2/R_QG^6 + alpha_M*(3*cos(phi_2)-1)^2/R_QM^6);
Lambda_z=(mu_13^2/(2*pi*(4*pi*epsilon_star)^2*(hbar*epsilon_0*epsilon_b)))*...
(alpha_Gz*(3*cos(theta_G)-1)^2/R_QG^6 + alpha_M*(3*cos(theta_M)-1)^2/R_QM^6);
%-------------------------------------------------------------------------%
% %
% The QDs parameters %
% %
%-------------------------------------------------------------------------%
% For the detuning and coupling constants:
omega_12=2.172436*(el_c/hbar);
omega_13=2.172432*(el_c/hbar);
%-------------------------------------------------------------------------%
% In this code we don't need delta_p & delta_c
omega_p=omega; %omega_c=omega;
Delta_p=omega_12-omega_p;
Delta_c=0;%omega_13-omega_c;
%-------------------------------------------------------------------------%
%-------------------------------------------------------------------------%
rho0=[0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00]; % The initial values
%[rho,fval]=fsolve(@Stability,rand(9)./10,options);% rand to generate random
% values b/w 0-1
[t,rho]=ode45(@f,t,rho0); % The function to find the sol for diff eqs.
rho12=interp1(t,(rho(:,2)),400e-15); % To get sol for rho12 in freq.
rho11=interp1(t,(rho(:,1)),400e-15);
rho22=interp1(t,(rho(:,5)),400e-15);
PopInv(i)=rho11-rho22;
Chi(i)=(N*mu_12/(epsilon_0*E_p))*rho12;
x_axis(i)=Delta_p; % For x axis being detuning
ResonanceFreq(i)=omega; % For x axis being frequency
P(i)=(rho12);
end
D=diff(P);% Differential of P=rho12;
VG=c./(1+0.5.*ResonanceFreq(:,1:length(D)).*real(D));% Group Velocity
nG=(c./VG)-1;% Group Index
%-------------------------------------------------------------------------%
%save DisPlusAbs1.mat
plot(x_axis(:,1:length(D))./1e12,nG,'blu')
%plot(x_axis./1e12,PopInv,'bla');
%plot(x_axis./1e12,imag(Chi),'bla');%hold on
%plot(x_axis./1e12,real(Chi),'blu');hold off
yline(0)
xlabel('\Delta_p THz','fontsize',12)
%ylabel('Absorption Im [\chi]','fontsize',12)
%legend('Absorption','Dispersion')
%plot(x_axis./1e15,VG./c,'-bla');hold on
%plot(x_axis./1e15,nG,'-blu');hold off
%set(gca,'fontsize',12)
%-------------------------------------------------------------------------%
% In case for plotting in both sides of y axis with one x axis:
%colororder({'bla','blu'})
%yyaxis left
%plot(x_axis./1e15,VG./c,'-bla');hold on
%ylabel('c/v_g')
%yyaxis right
%plot(x_axis./1e15,nG,'-blu');hold off
%ylabel('n_g')
%xlabel('The frequency \omega GHz','fontsize',12)
%xlabel('\Delta_p GHz','fontsize',12)
set(gca,'fontsize',12)
%-------------------------------------------------------------------------%
% %
% Equations of motion for the system %
% %
%-------------------------------------------------------------------------%
% Note that: rho11 --> rho(1), rho12 --> rho(2), rho13 --> rho(3),
% rho21 --> rho(4), rho22 --> rho(5), rho23 --> rho(6),
% rho31 --> rho(7), rho32 --> rho(8), rho33 --> rho(9),
%-------------------------------------------------------------------------%
function MEs = f(t,rho)
MEs=zeros(9,1);
% The eqns of motion:
MEs(1)= -(gamma_12+gamma_13)*rho(1)+1i*Omega_c*(pi_z+ phi_z)*rho(7)+...
1i*(Lambda_z)*rho(3)*rho(7)+...
1i*Omega_p*(pi_x+phi_x)*rho(4)+...
1i*(Lambda_x)*rho(2)*rho(4)-...
1i*Omega_c*conj(pi_z+phi_z)*rho(3)-...
1i*conj(Lambda_z)*rho(7)*rho(3)-...
1i*Omega_p*conj(pi_x+phi_x)*rho(2)-...
1i*conj(Lambda_x)*rho(4)*rho(2);
MEs(2) = -(0.5*(gamma_13)+0.5*(gamma_12))*rho(2)-1i*(Delta_p)*rho(2)+1i*(Lambda_x)*...
(rho(5)- rho(1))*rho(2)+...
1i*(Omega_p)*(pi_x+phi_x)*(rho(5)-rho(1))+...
1i*(Omega_c)*(pi_z+phi_z)*rho(8)+...
1i*(Lambda_z)*rho(3)*rho(8);
MEs(3) = -(0.5*(gamma_13)+0.5*(gamma_12)+0.5*(gamma_32))*rho(3)-...
1i*(Delta_c)*rho(3)+...
1i*(Lambda_z)*(rho(9)- rho(1))*rho(3)+...
1i*(Omega_c)*(pi_z+phi_z)*(rho(9)-rho(1))+...
1i*(Omega_p)*(pi_x+phi_x)*rho(6)+...
1i*(Lambda_x)*rho(2)*rho(6);
MEs(4) = -(0.5*(gamma_13)+0.5*(gamma_12))*rho(4)+1i*(Delta_p)*rho(4)-1i*conj((Lambda_x))*...
(rho(5)- rho(1))*rho(4)-...
1i*(Omega_p)*conj(pi_x+phi_x)*(rho(5)-rho(1))-...
1i*(Omega_c)*conj(pi_z+phi_z)*rho(6)-...
1i*conj((Lambda_z))*rho(7)*rho(6);
MEs(5) = (gamma_12)*rho(1)+(gamma_32)*(rho(9)-rho(5))-1i*(Omega_p)*(pi_x+phi_x)*rho(4)-...
1i*(Lambda_x)*rho(2)*rho(4)+...
1i*(Omega_p)*conj(pi_x+phi_x)*rho(2)+...
1i*conj((Lambda_x))*rho(4)*rho(2);
MEs(6) = -(0.5*(gamma_32))*rho(6)+1i*(Delta_p-Delta_c)*rho(6)-1i*(Omega_c)*(pi_z+phi_z)*rho(4)-...
1i*(Lambda_z)*rho(3)*rho(4)+...
1i*(Omega_p)*conj(pi_x+phi_x)*rho(3)+...
1i*conj((Lambda_x))*rho(4)*rho(3);
MEs(7) = -(0.5*(gamma_13)+0.5*(gamma_12)+0.5*(gamma_32))*rho(7)+...
1i*(Delta_c)*rho(7)-...
1i*conj((Lambda_z))*(rho(9)-rho(1))*rho(7)-...
1i*(Omega_c)*conj(pi_z+phi_z)*(rho(9)-rho(1))-...
1i*(Omega_p)*conj(pi_x+phi_x)*rho(8)-...
1i*conj(Lambda_x)*rho(4)*rho(8);
MEs(8) = -(0.5*(gamma_32))*rho(8)-1i*(Delta_p-Delta_c)*rho(8)+1i*(Omega_c)*conj(pi_z+phi_z)*rho(2)+...
1i*conj((Lambda_z)*rho(7)*rho(2)-...
1i*(Omega_p)*(pi_x+phi_x)*rho(7)-...
1i*(Lambda_x)*rho(2)*rho(7));
MEs(9) = (gamma_13)*rho(1)+(gamma_32)*(rho(5)-rho(9))-1i*(Omega_c)*(pi_z+phi_z)*rho(7)-...
1i*(Lambda_z)*rho(3)*rho(7)+...
1i*((Omega_c)*conj(pi_z+phi_z))*rho(3)+...
1i*conj((Lambda_z))*rho(7)*rho(3);
%MEs(10) = rho(1) + rho(5) + rho(9) -1;
end
%-------------------------------------------------------------------------%
toc
end
답변 (0개)
참고 항목
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!오류 발생
페이지가 변경되었기 때문에 동작을 완료할 수 없습니다. 업데이트된 상태를 보려면 페이지를 다시 불러오십시오.
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
아시아 태평양
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)
