Portfolio Optimization with LASSO

조회 수: 17 (최근 30일)
ANDREA MUZI
ANDREA MUZI 2020년 10월 12일
답변: ANDREA MUZI 2020년 10월 12일
I have to find the optimal portfolio adding the "l-1 norm" constraint to the classical mean-variance model. How can i write this optimization in matricial form ?

답변 (2개)

Ameer Hamza
Ameer Hamza 2020년 10월 12일
편집: Ameer Hamza 2020년 10월 12일
This shows an example for the case of 5 portfolios
mu = rand(1, 5);
eta = 0.5;
Sigma = ones(5);
Aeq = [mu; ones(1, 5)];
Beq = [eta; 1];
x0 = rand(5,1); % initial guess
sol = fmincon(@(x) x.'*Sigma*x, x0, [], [], Aeq, Beq, [], [], @nlcon);
function [c, ceq] = nlcon(x)
c = sum(abs(x))-1;
ceq = [];
end
  댓글 수: 4
ANDREA MUZI
ANDREA MUZI 2020년 10월 12일
equal to eta
Ameer Hamza
Ameer Hamza 2020년 10월 12일
Then the code in my answer satisfies all the constraints. You can verify
mu = rand(1, 5);
eta = 0.5;
Sigma = ones(5);
Aeq = [mu; ones(1, 5)];
Beq = [eta; 1];
x0 = rand(5,1); % initial guess
sol = fmincon(@(x) x.'*Sigma*x, x0, [], [], Aeq, Beq, [], [], @nlcon);
function [c, ceq] = nlcon(x)
c = sum(abs(x))-1;
ceq = [];
end
Results
>> mu*sol % output is eta
ans =
0.5000
>> sum(sol) % sum is 1
ans =
1
>> sum(abs(sol)) % sum of absolute values is 1
ans =
1

댓글을 달려면 로그인하십시오.


ANDREA MUZI
ANDREA MUZI 2020년 10월 12일
I thank you but it is not the result I expected; I try to rephrase the question. I found a way to linearize the constraint on the weights norm (photo). Basically I have to find the vector between tmin and tmax, in which tmin penalizes all the weights of the assets, bringing them to zero, except one whose weight will be equal to 1 and tmax, whose value will not penalize any asset

카테고리

Help CenterFile Exchange에서 Linear Programming and Mixed-Integer Linear Programming에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by