Improve NN performance and prediction error

조회 수: 4 (최근 30일)
Ande Mandoyi
Ande Mandoyi 2020년 9월 11일
댓글: Ande Mandoyi 2020년 9월 12일
I've been stuck on a homework question for a while now. The question is as follows:
Design a feed forward multi-layer neural network to approximate the function y=sin(x1)+cos(x2).
Here, -5<x1<5 and 0<x2<5. Please use x1 = (rand(1,50)-0.5)*10; x2 = rand(1,50)*5; to get the samples to train the neural network. Finally, please draw the prediction error series y - ynet for the inputs x1=-5:0.1:5 and x2=0:0.05:5.
My code is as follows. I get keep getting large prediction errors for unkknown dataset "input". Please help
x1 = (rand(1,50)-0.5)*10 %training sample one
x2 = rand(1,50)*5; %training sample two
x = [x1;x2];
y=sin(x1)+cos(x2); %targeted output
%feed-forward neural network with one hidden layer
%hidden layer has 10 hidden neurons
%10000 epochs training cycles, stops training when the...
%error is less or equal to 1e-25/ after 10000 epochs
%hidden neurons use a tan sigmoid activation function
%output neurons use a linear activation function
%learning rate = 0.01
%Levenberg-Marquad back-propogation is used
%***********************************************************
net = newff(minmax(x),[10 1],{'tansig','purelin'},'trainlm');
net.trainparam.epochs = 10000;
net.trainparam.goal = 1e-25;
net.trainparam.lr = 0.02;
net = train(net,x,y);
%************************************************************
input1 = -5:0.1:5; %first input
input2 = 0:0.05:5; %2nd input
input = [input1;input2];
y=sin(input1)+cos(input2);
ynet = net(input);
plot(y-ynet) %error series plot
title('Error series plot')
grid
  댓글 수: 2
Mohammad Sami
Mohammad Sami 2020년 9월 12일
Have you tried adding more hidden layers ?
Ande Mandoyi
Ande Mandoyi 2020년 9월 12일
Yes, does the code look fine though?

댓글을 달려면 로그인하십시오.

답변 (0개)

카테고리

Help CenterFile Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기

제품


릴리스

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by